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Abstract
English
This dissertation presents the Higher-Order Array Decomposition Method (HO-ADM),
a fast, accurate yet versatile full-wave analysis technique applicable for electrically
large arrays of antennas or scatterers, as they are typical for space applications, in-
cluding sparse, connected, and non-identical-element arrays. The HO-ADM exploits
the multi-level block-Toeplitz (MBT) property of the Method of Moments (MoM) ma-
trix in case of regular arrays, permitting an FFT-accelerated matrix-vector product
(MVP) to achieve asymptotic computational and memory complexities of O(N logN)
and O(N), respectively, where N is the number of unknowns.

The combination of ADM with higher-order (HO) hierarchical Legendre basis
functions (BFs) generally yields an order of magnitude reduction in both computation
time and memory consumption as compared to using first-order BFs. For example, a
40 times reduction in total computation time and a ten times reduction in memory
consumption is achieved for a 100-element Direct Radiating Array (DRA) of conical
horns on a laptop, resulting in a computation time of five minutes compared to over
three hours with first-order BFs.

Several extensions of the HO-ADM are presented including capabilities for analyz-
ing sparse array antennas, arrays with electric conduction currents between elements,
arrays with non-identical elements, and arrays with dielectric substrates. The anal-
ysis of sparse array antennas is achieved by using a technique to implicitly keep the
MoM matrix for a fully populated array, thus preserving the FFT-accelerated MVP,
and by employing a constrained Krylov subspace in the iterative solver.

The extension to arrays with electric conduction currents between elements is
accomplished by introducing half-doublet BFs at connected boundaries, using the
Discontinuous Galerkin Method (DGM) to enforce current continuity, and by intro-
ducing auxiliary unknowns to retain the MBT property of the MoM matrix. The
analysis of arrays with non-identical elements is realized by introducing the concept
of a Super Unit Cell (SUC) from which individual mesh-regions can be excluded from
the iterative solution process.

Finally, the analysis of connected and simultaneously closed structures, including
dielectric substrates, is made possible by introducing a method of internal walls and
internal equivalent currents, and by employing the Poggio-Miller-Chang-Harrington-
Wu-Tsai (PMCHWT) integral equation formulation.
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Numerous numerical tests have confirmed the efficacy and accuracy of the pre-
sented extensions, from which it is evident that the HO-ADM, generally, is more than
an order of magnitude faster than a state-of-the-art Higher-Order Multi-level Fast
Multipole Method (HO-MLFMM) implementation. This performance is achieved
with a memory consumption of HO-ADM which is reduced or comparable to HO-
MLFMM. For example, a 32× 32 = 1024-element connected all-metal antenna array
designed for the Europa Lander mission is analyzed on a laptop within six minutes
with one million unknowns with HO-ADM, compared to approximately one hour for
HO-MLFMM. Another example is a 8 × 128 = 1024-element patch array with non-
identical elements which is solved with HO-ADM in three minutes compared to half
an hour for HO-MLFMM. Additionally, results demonstrate efficient and accurate
analysis of a 20× 20 = 400-element array of PEC cylinders embedded in a dielectric
substrate. Moreover, a finite thickness PEC plate with 2500 holes, analyzed as a
50× 50-element array of identical elements with the HO-ADM is solved with a total
computation time of four minutes, compared to 68 minutes with HO-MLFMM.

The developed method represents a significant advancement in the field of com-
putational electromagnetics applied to the simulation of electrically large arrays of
antennas or scatterers. Through a rigorous application of an FFT-accelerated MVP,
the computation times compared to an existing fast method based on the MLFMM
are reduced by at least a factor of ten, while at the same time maintaining a compara-
ble memory consumption or even less. The tremendous acceleration in computation
speed makes the design and optimization of state-of-the-art antenna arrays more
efficient and reduces significantly the time to market.

Danish

Denne afhandling præsenterer den såkaldte Higher-Order Array Decomposition Me-
tode (HO-ADM), en hurtig, præcis og samtidigt alsidig fuldbølgeanalyseteknik, der
kan anvendes til elektrisk store grupper af antenner eller spredere, hvilke typisk an-
vendes indenfor applikationer til brug i rummet, herunder antennegrupper der er
sparsomt besatte, antennegrupper med elektrisk forbundne elementer samt grupper
bestående af uens elementer. HO-ADM udnytter multi-niveau block-Toeplitz (MBT)
egenskaben for momentmetode (MoM)-matricen i tilfælde af regulære antennegrup-
per, hvilket muliggør et FFT-accelereret matrix-vektor produkt (MVP) for at opnå
asymptotiske beregnings- og hukommelseskompleksiteter på henholdsvis O(N logN)
og O(N), hvor N er antallet af ubekendte.

Kombinationen af ADM med højere-ordens (HO) hierarkiske Legendre basisfunk-
tioner (BF’er) medfører generelt en tifold reduktion i både beregningstid og hukom-
melsesforbrug sammenlignet med brugen af første-ordens basisfunktioner. For ek-
sempel opnås en 40 ganges reduktion i samlet beregningstid og en tifold reduktion
i hukommelsesforbrug for en 100-elementers antennegruppe af koniske horn, vel at
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mærke på en bærbar computer med en samlet beregningstid på fem minutter, i mod-
sætning til over tre timer med første-ordens BF’er.

Der præsenteres adskillige udvidelser af HO-ADM, herunder muligheden for at
analysere sparsomt besatte antennegrupper, grupper med elektriske ledningsstrømme
mellem elementerne, grupper bestående af uens elementer samt grupper med dielek-
triske substrater. Analysen af sparsomt besatte antennegrupper er opnået ved at
benytte en teknik til implicit at bevare MoM-matricen for en fuldt besat gruppe, og
således bevare det FFT-accelererede MVP, samt ved at benytte et begrænset Krylov-
underrum i den iterative løsningsproces.

Udvidelsen til grupper med elektriske ledningsstrømme mellem elementer er op-
nået ved at introducere halve BF’er ved elementernes forbundne grænser, ved at
benytte den såkaldte Discontinuous Galerkin Method (DGM) til at sikre strømkonti-
nuitet, samt ved at introducere hjælpe-ubekendte for at bevare MBT-egenskaben af
MoM-matricen. Analysen af grupper med uens elementer er realiseret ved at introduc-
ere den såkaldte Super Unit Cell (SUC), hvorfra individuelle diskretiseringsregioner
kan ekskluderes fra den iterative løsningsproces. Yderligere er analysen af forbundne
og samtidigt lukkede strukturer, inklusive dielektriske substrater, gjort mulig ved at
introducere en metode for interne vægge og interne ækvivalente strømme, samt ved
at bruge Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integralligningsfor-
muleringen.

Adskillige numeriske eksperimenter har bekræftet effektiviteten og nøjagtigheden
af de præsenterede udvidelser, hvorfra det er tydeligt, at HO-ADM generelt er mere
end ti gange hurtigere end en moderne såkaldt Higher-Order Multi-level Fast Multi-
pole Method (HO-MLFMM) implementering. Denne ydeevne opnås med et hukom-
melsesforbrug som er reduceret eller sammenligneligt med HO-MLFMM. For eksem-
pel analyseres en 32×32 = 1024-elementers antennegruppe med forbundne elementer,
designet til den såkaldte Europa Lander mission, på en bærbar computer inden for
seks minutter med en million ubekendte, sammenlignet med cirka en time for HO-
MLFMM. Et andet eksempel, er en 8× 128 = 1024-elementers patch antennegruppe
bestående af uens elementer, hvilket løses med HO-ADM på tre minutter sammen-
lignet med en halv time for HO-MLFMM. Desuden demonstrerer resultaterne effektiv
og nøjagtig analyse af en 20× 20 = 400-elementers gruppe af PEC-cylindre indlejret
i et dielektrisk substrat. Slutteligt løses en perfekt elektrisk ledende (PEC) plade
med endelig tykkelse med 2500 huller, analyseret som en 50 × 50-elementers gruppe
af ens elementer med HO-ADM på fire minutter, sammenlignet med 68 minutter for
HO-MLFMM.

Den udviklede metode repræsenterer betydelige fremskridt indenfor numerisk felt-
teori anvendt til analysen af elektrisk store grupper af antenner eller spredere. Via
et nøjagtigt FFT-accelereret MVP reduceres simuleringstiderne med mindst en fak-
tor ti sammenlignet med en eksisterende hurtig metode baseret på MLFMM, medens
der samtidigt opretholdes sammenligneligt, eller endda mindre, hukommelsesforbrug.
Denne markant forøgede acceleration i simuleringshastighed gør design og optimering
af moderne antennegrupper mere effektiv og reducerer signifikant tiden fra koncep-
tudvikling til fremstilling af fremtidens antenner.
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CHAPTER1
Introduction

Since the launch of the world’s first satellite (Sputnik 1) in 1957, profound scientific
developments have facilitated the realization of near real-time global television broad-
casts and phone calls, deep-space exploration as well as remote-sensing of our earth.
Such developments have necessitated increased capabilities and physical complexity
of antennas for space applications. Traditionally, reflector antennas have been the
predominant choice for both satellite-based communication, deep-space exploration,
and earth observation missions as they provide the highest gain and impedance band-
width while maintaining excellent ground coverage at the lowest cost [1]. Nevertheless,
an on-going shift from large spacecrafts in geo-stationary orbit to constellations of
smaller spacecrafts in low-earth-orbit (LEO) or medium-earth-orbit (MEO) and a
huge demand for flexible in-orbit antenna reconfiguration is identified as two major
trends which will change the antenna technology used in future satellite payloads [2].

The demand for in-orbit flexibility and the shift towards MEO and LEO space-
crafts drive the development of payloads which incorporate direct radiating antenna
arrays with electronic steering and beam-shaping capabilities [3, 4]. Thus far, the
adaptation of array technology for space applications has been impeded by a variety
of factors. One of the central impediments of existing array-based payloads is the
limited number of beams which can be produced [5]. Where state-of-the-art reflector-
based telecom payloads produce thousands of simultaneous beams [6, 7], state-of-
the-art array-based payloads (Eutelsat Quantum) only produce 8 [8]. In addition,
next-generation ground terminals must be able to concurrently track numerous LEO
satellites, which is not possible with existing reflector-based technology [4,9]. Conse-
quently, a gradual change from reflector-based technology to active array antennas is
highly anticipated for future deployed space payloads [10].

For this transition, future array-based payloads need to produce a considerably
greater amount of beams, requiring the synthesis of electrically large antenna arrays.
Their performance is nevertheless contingent upon the ability to accurately predict
antenna array performance through rigorous methods based on computational elec-
tromagnetics (CEM). Existing methods used to synthesize large arrays are based on
the embedded element pattern method [11], where a single array element is analyzed
assuming identical neighbors in a regular grid. These methods are inaccurate close
to the array edges and electromagnetic mutual coupling between array elements is
generally considered a parasitic effect [12]. This increases the possibility of favoring
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one type of array element over another merely because mutual coupling is disregarded.
Moreover, arrays for space applications are expected to be implemented as sparse or
aperiodic arrays [13, 14], in which the existing embedded element pattern approach
can no longer be employed. Consequently, mutual coupling is neglected already dur-
ing the design phase, which implies that subsequent physical implementation must
evade mutual coupling effects, e.g. by larger element spacings and/or added shielding
structures, which in turn leads to added mass and volume.

If a more accurate analysis approach existed one could instead regard mutual
coupling as an inherent property of the array, which can be exploited instead of being
avoided. This would permit accurate designs of dense aperiodic antenna arrays, in
which array elements can be placed closer and can be cast in any shape, providing both
mass, volume and monetary savings while maintaining excellent antenna performance.
Presently available algorithms for analyzing aperiodic antennas are, however, too
limited to support the rapid development of new space-technology (see Section 1.3),
either because they require a tremendous amount of computer resources or because
they employ approximations that are not error-controllable† and typically assume
insignificant electromagnetic coupling between array elements.

1.1 Research Objective
To address the above-mentioned challenges, the objective of this dissertation is to
develop a fast, accurate yet versatile analysis method for aperiodic antenna arrays
for space applications. Please note that in this work, we generally adopt and adhere
to the IEEE definition [15] of terms for antennas. As an example, the term “aperiodic
array” is understood as “an array with non-uniformly spaced elements” which include
sparse, thinned and space-tapered arrays.

By the term fast, we mean that the asymptotic computational complexity shall
be, at least, better than that of the conventional Method of Moments O(N3), but
preferably of the order of O(N logN), in which N is the total number of unknowns.
Moreover, the total computation time of the new analysis method should be faster
than existing state-of-the-art methods when run on comparable hardware.

By the term accurate, we mean that the method should not resort to any ap-
proximations other than those inherent to the discretization of the problem (mesh-
ing), representation of the fields and currents as a finite linear combination of basis
functions (BFs) and the iterative solution procedure. In case approximations are un-
avoidable, it is paramount that they are error-controllable in the sense that one can
specify the desired accuracy a priori to a simulation run.

By the term versatile, we mean that the method is capable of analyzing general
arrays comprising both planar and volumetric array elements. It should efficiently

†An error-controllable method is in this dissertation understood as a method for which the user can
specify a priori to a simulation run, the number of significant digits which is desired in the solution
vector.
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handle sparse or thinned arrays and accommodate interconnecting geometry that
permit conduction currents to flow between elements. Non-identical elements and
dielectric substrates should be handled as well.

Beyond speed and accuracy, the method’s versatility is what truly makes it effec-
tive in real-world applications. As depicted in Figure 1.1, this versatility is presented
as the four main requirements for the developed method.

Figure 1.1: Versatility requirements for the developed computational
method, showing the overlapping regions of applicability.

1.2 Framework of the Dissertation
It is important to highlight that the findings presented in this dissertation are built
upon the extensive groundwork laid by colleagues at TICRA prior to the start of
the PhD study. The developed method, therefore, is an extension of the already
advanced capabilities of TICRA’s established software package, ESTEAM [16]. More
specifically, the code developed in this PhD study relies on the following already
existing components:

• A Higher-Order Method of Moments (HO-MoM) implementation [17], encom-
passing scatterer geometrical discretization and meshing, basis function cre-
ation, and surface integration routines for the Electric (EFIE) and Magnetic
(MFIE) Field Integral operators [18].

• A preconditioned Generalized Minimum RESidual (GMRES) implementation.
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As a result, both the developed method and the ensuing discussion on state-of-the-art
techniques have been limited to surface integral equation (IE)-based methods utilizing
an iterative solution approach. Note also, that some parts pertaining to the existing
code cannot be disclosed.

1.3 State-of-the-Art
While the Method of Moments [19] (MoM) can be regarded as accurate in the sense
that it rigorously takes into account all mutual coupling and edge effects, and ver-
satile in handling complex structures with intricate details, it is not fast. For the
conventional MoM for surface integral equations, the memory consumption and com-
putational complexity scales as† O(N2) and O(N2)−O(N3), respectively, where N
is the number of unknowns. This asymptotic scaling is prohibitively large for the
design of future phased array antennas for space applications.

Traditional methods used to analyze and design electrically large arrays are pri-
marily based on approximate methods. Herein, the predominant approach has been
the embedded element (or active element) pattern method [11, 21], in which a sin-
gle (or few) array elements are analyzed assuming identical neighbors in a regular
grid [22]. Other not as widely adopted approximate but very efficient methods for
electrically large arrays are the so-called Floquet-mode-based methods [23]. Nev-
ertheless, these methods assume infinite array dimensions and array periodicity to
achieve their efficiency. We note that methods based on the Domain Decomposition
Method (DDM) allow for computationally efficient array analysis by dividing the full
array domain into subproblems in which local solutions are solved first and then cou-
pled together [24–26]. The DDM method performs particularly well when combined
with the Finite Element Method (FEM) in case of arrays with complicated stack-ups.
Nevertheless, integral-equation-based methods still possess the distinct advantage in
inherently satisfying the open boundary radiation condition, eliminating the need for
absorbing boundary conditions. In addition, IE methods do not suffer from numerical
dispersion and stability issues as is the case for FEM [27].

In the subsequent paragraphs, we seek to categorize existing fast IE-based methods
based on their primary characteristics to provide the reader with a clear overview.
Note that this is a rough classification, as the different methods may overlap on
multiple key parameters.

Green’s Function Methods In literature, several mature techniques based on
closed-form Green’s functions have been employed for the specific class of microstrip
patch arrays [28–30]. In principle, these methods could successfully be exploited to
yield very efficient algorithms for aperiodic antenna arrays, provided that the specific
Green function for that particular array is determined. This is a major drawback

†In this dissertation, Big-O notation O(f(x)) is employed to denote that the true scaling g(x) of an
algorithm as x → ∞ satisfies |g(x)| ≤ C|f(x)| for a fixed positive C ∈ R for all x > x0, x0 ∈ R [20].
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especially in a commercial context in which versatility is key, i.e. the method should
be applicable to as many different problems as possible.

MacroBasis Function Methods More versatile and efficient array analysis of
general arrays has been made possible by introducing various methods based on Mac-
roBasis Functions [31–33] (MBFs) such as characteristic basis functions (CBF) [34,35],
synthetic basis functions (SBF) [36] and accurate subentire-domain (ASED) [37] ba-
sis functions. These methods are all quite similar, in the sense that they obtain a
compressed version of the MoM matrix by computing a set of problem-matched large-
domain basis functions. Nevertheless, the generation and number of MBFs to include
is in general problem specific, making the asymptotic scaling difficult to predict. In
addition, the basis functions must be chosen to conform with the particular antenna
or scatterer in question. Therefore, it seems cumbersome to employ this method
especially for general electrically large structures. These methods may, however, be
tailored to array problems and/or combined with e.g. the Adaptive Cross Approxi-
mation or Multipole expansion technique [38–40]. In any case, one of the biggest im-
pediments of the MBF-based-methods are their inherent partial error-controllability.
This stems from the fact that the number of characteristic/macro functions cannot
directly be related to the desired number of correct digits in the solution.

Algebraic-Compression-based Methods Whereas MBF-methods obtain com-
pression through aggregating many elementary BFs into fewer groups, other methods
focus on algebraic matrix compression. Examples of such include the fast Integral
Equation Solver (IES3) [41], Integral Equation QR algorithm (IE-QR) [42] and Adap-
tive Cross Approximation (ACA) [43]. These methods can be regarded as algebraic
in nature, in that they work by clever grouping and/or by factorization of smaller
interaction matrices with the aim of improving the compressibility of the system ma-
trix and thereby accelerating the computation time. Nevertheless, for electrically
large problems and highly oscillatory kernels (e.g. the Helmholtz kernel), these algo-
rithms unfortunately suffer from worse than O(N2) complexity for both memory and
matrix-vector multiplication [44]. Similar methods denoted as fast direct solvers are
also based on lossy compression, but focus strictly on efficient factorization and direct
solution of the linear system [45–47]. In recent literature [48], these methods have
been reported to obtain close to O(N logN) computational complexity, but generally
suffer from a high setup-time.

Multipole-based Methods Alternatively, the MoM solution can be accelerated by
means of the multi-level fast multi-pole method (MLFMM) [49,50], which is a widely
used error-controllable full-wave method for electrically large structures [51–53]. The
MLFMM can be thought of as an acceleration of the MoM, based on the splitting
of the impedance matrix into a near-field part and a far-field part. The near-field
interactions are not touched upon by the MLFMM algorithm and are calculated in the
usual MoM way. The far-field interactions are calculated by employing a multi-level
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space partitioning scheme in which numerous basis functions are grouped on multiple
levels. The speed-up is achieved by letting basis functions in the largest feasible groups
interact with each other. MLFMM achieves a computational and memory complexity
of O(N logN). A hybrid MoM/MLFMM for combined array analysis and platform
scattering has also been proposed [52], but the full MoM matrix used to characterize
the array will quickly exhaust memory resources and this method is only applicable
when antenna and platform regions are loosely coupled. Moreover, in conventional
MLFMM, sub-wavelength array element sizes and spacings pose a challenge because it
does not exploit the typical periodic nature of arrays [54]. By exploiting the Toeplitz
property and multi-pole methods simultaneously and assuming that the number of
k-space directions are less than the number of unknowns per array element, very
efficient array analysis is possible [55,56], however all elements must be identical.

Grid-based FFT-Methods Another class of fast integral equation methods ex-
ploits the circular convolution theorem which allows the use of a Fast Fourier Trans-
form (FFT) to accelerate the solution process. Examples are the precorrected-FFT
method (pFFT) [57–59] and the Adaptive Integral Method (AIM) [60, 61] and the
Integral Equation Fast Fourier Transform method (IE-FFT) [44]. Common to these
methods is the mapping of basis functions (or Green’s function) onto a rectangu-
lar grid, where the translational invariance of Green’s function results in a Toeplitz
matrix structure, which in turn enables the calculation of the matrix-vector multipli-
cation by the Fast Fourier Transform (FFT). Besides the obvious approximation when
forcing basis functions onto a regular grid, the computational complexity of pFFT
and AIM is typically around O(N1.5 logN) [44, 62] and at best O(N logN) [57] for
3D surface problems. Though, it should be noted that the memory requirement for
AIM is O(N1.5) for surface problems. In addition, the optimal choice of various
algorithm parameters in the AIM can unfortunately not be determined a priori as
described in [63]. Lastly, the AIM method seems to be mostly applicable for planar
structures [64–67], although successful volumetric implementations do exist [63,68].

Towards New State-of-the-Art Although most of the methods discussed above
are based on analytical and/or physical approximations, they are well-suited to ac-
celerate the analysis of general electrically large antenna arrays because they are fast
(computational complexity of O(N logN)) and some even error-controllable. Never-
theless, when array elements are placed on a regular‡ lattice, a computational com-
plexity close to O(N logN) can be achieved with an accuracy equal to the full MoM
solution by employing the Array Decomposition Method (ADM) [56, 69]. This is
possible by exploiting the translational invariance of the 3D free-space Green func-
tion in connection with the regular geometrical lattice (e.g. rectangular, hexagonal or
circular) of the array elements and consecutively ordered basis functions, allowing an
FFT-accelerated matrix-vector product (MVP) in an iterative solution process [70,71].

‡In this dissertation, the term regular array refers to an arrangement of array elements which are
placed equidistantly along each lattice dimension, including non-orthogonal and circular lattices.
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The ADM stands out as an accurate full-wave solver for antenna arrays for space ap-
plication because it does not resort to any approximations other than those inherent
to surface discretization and the iterative solution process. Nonetheless, its inability
to cope with arrays with interconnecting geometry, sparse or aperiodic arrays and
non-identical elements presents notable impediments. Overcoming these, and other
shortcomings of the ADM will be the fulcrum of the remainder of this dissertation.

1.4 Original Contributions

This dissertation presents the following original contributions to the field of compu-
tational electromagnetics in the framework of array analysis:

• Development of HO-ADM for Regular Arrays: The existing boundary
integral part of the Array Decomposition Method (ADM) has, for the first
time, been combined with higher-order basis functions. Numerical tests have
verified that this combination, denoted HO-ADM, leads to more than an order of
magnitude lower memory consumption and faster computation times compared
to ADM employing traditional first-order basis functions. Furthermore, for
the first time, higher-order convergence has been demonstrated for ADM in
combination with hierarchical higher-order basis functions.

• Arrays with Interconnecting Geometry: The HO-ADM has been extended
to allow for the flow of electric conduction currents between array elements.
This advancement was realized using a unique application of the established
Discontinuous Galerkin Method. As a result, the corresponding Method of Mo-
ments (MoM) matrix maintains its block-Toeplitz property which more impor-
tantly ensures that the HO-ADM continues to benefit from its FFT-accelerated
matrix-vector product. The effective solution is made possible by realizing an
asymptotically constant-memory preconditioner applicable for HO-ADM.

• Aperiodic Arrays with Non-identical Elements: The functionality of HO-
ADM has been expanded to accommodate non-uniform arrays, such as sparse
or thinned arrays, through selective truncation of the Krylov subspace in the it-
erative solution process. Furthermore, with the introduction of a super unit-cell
(SUC) strategy, the method can handle non-identical elements while maintain-
ing computational efficiency across various element configurations.

• Integration with Dielectric Substrates: The constrained Krylov subspace
idea is used together with special geometrical meshing to allow the HO-ADM to
handle arrays with a dielectric substrate, broadening the solver’s applicability
across a myriad of array designs.
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1.5 Organization of the Dissertation
The dissertation is organized as follows:

• Chapter 1 introduces the scope of the present study (Section 1.1) and provides
a thorough review, discussion, and classification of existing computational elec-
tromagnetic surface-integral-equation methods (Section 1.3) for the analysis of
antenna arrays.

• Chapter 2 presents common array configurations which have been designed
for space applications (Section 2.1) and seek to provide the reader with a con-
cise but sufficient understanding of the computational method (ADM) which
lays the foundation of the present study (Section 2.2). The importance and im-
plications of extending ADM with HO BFs (HO-ADM) are discussed in detail
in Section 2.3, and its performance is assessed through several numerical test
cases.

• Chapter 3 examines the extensions necessary for the analysis of thinned ar-
ray antennas (Section 3.1), as well as extensions allowing electrically connected
elements, i.e. where conduction currents are allowed to flow between array ele-
ments (Section 3.2). The chapter concludes with numerical validation examples,
demonstrating the efficiency and real-world applicability of the HO-ADM by
comparisons with a state-of-the-art HO-MLFMM implementation.

• Chapter 4 provides additional extensions to the HO-ADM, allowing for array
antennas with non-identical elements (Section 4.1), as well as finite thickness
structures which can be modeled as array antennas, such as arrays with dielec-
tric substrates (Section 4.2).

• Chapter 5 gives a comprehensive overview of the key findings and conclusions
from the research conducted and presented in this dissertation.

To allow for consistent interpretation of key terms and phrases, Appendix D provides
their definitions as used throughout this dissertation. An ejωt time-dependence, with
ω = 2πf the angular frequency, is assumed and suppressed throughout the disserta-
tion.



CHAPTER2
ADM with Higher-order

Basis Functions
This chapter begins with an overview of both traditional and contemporary state-of-
the-art antenna arrays for space applications, establishing the context for the applica-
tions of the developed method (Section 2.1). Next, the standard Array Decomposition
Method (ADM) is briefly described (Section 2.2), after which the importance and im-
plications of its extension with higher-order basis functions is discussed (Section 2.3).
The performance of the extended method is assessed through numerical validation ex-
amples, including comparisons with a state-of-the-art MLFMM implementation [16].

We note that the term “standard ADM” refers to the boundary integral (BI) part
of the method described in [69], which is neither applicable to connected, aperiodic nor
to non-identical-element antenna arrays. The term “extended method” is henceforth
referred to as the Higher-Order Array Decomposition Method (HO-ADM). While this
dissertation discusses each extension to the developed method separately for clearer
comprehension, the label HO-ADM is used to denote any number of these extensions,
without distinguishing which ones are incorporated in each instance of its use. The
most significant parts of the work in this chapter are presented in papers [J1], [C1]
which are found under Publications.

2.1 Array Antennas for Space Applications

Antennas deployed in space must ensure reliable data transmission and reception
through electromagnetic waves while being resistant to extreme temperature vari-
ations, cosmic radiation, and potential micrometeoroid impacts, which necessitate
robust designs and the use of durable materials [72]. As discussed in Chapter 1, re-
flector antennas have been the traditional choice for space payloads due to their ability
to provide a high gain at low cost. Nevertheless, both array fed reflectors and direct
radiating array antennas have gained considerable attention for space applications
due to their flexibility in beam shaping, electronic steering, and modular design [73].
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(a) Two All-Metal 127-element direct radiat-
ing array for MEO communication at S-band
[74].

(b) L-band 120-element feed ar-
ray for the Inmarsat-4 satellite for
GEO communication [75].

(c) L- and S-band phased array an-
tenna structures for the Globalstar-
1 satellite for LEO communication
[76].

Figure 2.1: Examples of array antennas used for space applications

Examples of such array antennas designed for space, operating in different orbits
with diverse applications and for various frequency bands are shown in Figure 2.1.
Herein, we observe that antennas intended for space typically comprise metal-only ra-
diating elements. The primary reason is that dielectric materials accumulate charged
particles, which can result in electrostatic discharges that disrupt communications.
Moreover, all-metal designs offer superior radiation efficiency and are more resilient
to high temperature fluctuations. Therefore, antenna elements constructed entirely of
metal remain the preferred choice for in-orbit space applications even today [74,77–79].

Figure 2.1 (a) showcases two all-metal Direct Radiating Arrays (DRAs), which
have been designed by Hughes for ICO Global Communications Ltd. for satellite
mobile communication in the Medium Earth Orbit (MEO) in the S-frequency band. It
features an all-metal patch excited cup as a radiating element, specifically designed to
reduce passive intermodulation (PIM) products. For both arrays, the 127 elements are
placed on a regular grid and the array is hexagonally thinned. Another example is the
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(d) All-metal X-band phased array
antenna for the extreme environ-
ments of a potential Europa Lan-
der [77].

(e) The Hanwha Phasor A7700
Ku-band phased array antenna for
OTM satellite communication [80].

(f) CAD illustration of the Electronically Steerable
Antenna (ELSA+) up-link direct radiating array
for the Eutelsat Quantum satellite [8].

Figure 2.1: Examples of array antennas used for space applications (cont.)

L-band Feed Array for the Inmarsat-4 Satellite shown in Figure 2.1 (b). It is designed
to support the Broadband Global Area Network (B-GAN) from the Geostationary
Earth Orbit (GEO). The array features 120 helical radiating elements arranged inside
an 8-sided polygon, i.e. a thinned regular triangular lattice. Figure 2.1 (c) shows the
L- and S-band Phased Array Antenna structures designed for the Globalstar-1 mission
to support mobile satellite voice and data. The L-band and S-band arrays comprise
61 and 91 patch-in-cavity elements, respectively. The elements are placed on a regular
grid and the array is hexagonally thinned, as is the case for the ICO DRA.

A state-of-the-art all-metal X-band phased array antenna for space is shown in
Figure 2.1 (d), which is proposed as a potential candidate for an Europa† Lander. It

†Europa is the smallest of the four Galilean moons orbiting the planet Jupiter.
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comprises 32 × 32 = 1024-elements in a regular rectangular grid, and achieves dual-
band right-hand circularly-polarized (RHCP) radiation for Direct-To-Earth (DTE)
communication with a single feed-pin per element. A modern user-terminal is the
Hanwha Phasor A7700 antenna as seen in Figure 2.1 (e). This Ku-band phased array
antenna is specifically developed for On-The-Move (OTM) scenarios, with dual simul-
taneous receive channels and a single transmit channel. It consists of 4096 circular
patch radiating elements arranged as 4× 4 sub-arrays each with 16× 16 elements.

Last but not least, Figure 2.1 (f) provides a detailed CAD illustration of the Elec-
tronically Steerable Antenna (ELSA+), which is the central up-link DRA for the
Eutelsat Quantum Satellite which was launched in July 2021 [8, 81]. It consists of
10 × 10 = 100 spline-profile horn antennas operating in the Ku frequency band [10],
achieving a dual linearly polarized radiation pattern.

In summary, both traditional and state-of-the-art array antennas employ elements
placed on a regular but not necessarily orthogonal lattice which may be thinned to
reduce weight, cost and power requirements. In subsequent paragraphs we will explore
how to do fast analyses of these common array configurations using the full-wave and
rigorous Array Decomposition Method.

2.2 The Array Decomposition Method
In the context of integral equation methods for computational electromagnetics, any
arrangement of elements (antennas or scatterers) on a lattice for which the inter-
action† between the elements depends on their relative rather than their absolute
positions (i.e. translational invariance) will allow for a Toeplitz [82, 83] structure in
the resulting system matrix. This special matrix structure is what facilitates an
FFT-accelerated MVP in the Array Decomposition Method [69] without using ap-
proximations.

Figure 2.2 illustrates two common arrangements of elements (rectangular and cir-
cular) which are compatible with the ADM, i.e. they both lead to translationally
invariant interactions. The elements are placed in a lattice defined by the lattice vec-
tors i⃗1, i⃗2, i⃗3 with inter-element distances defined by ||⃗i1||, ||⃗i2||, ||⃗i3||. The resulting
MoM matrices for both configurations have been depicted to provide a clear under-
standing of the connection between the physical arrangement of elements and the
block-Toeplitz (BT) structure.

For reasons that will soon be apparent, we define the total number of unknowns
for a given array in a slightly unconventional manner as

N = s

d∏
i=1

ni = sT , (2.1)

†In this dissertation, the term interaction is used to denote the result of calculating the Moments
(inner products between basis functions and the Green function) in the MoM-matrix, corresponding
to the interaction between two (or more) elements.
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where s is the number of unknowns on each array element, T is the total number
of array elements, d is the number of lattice dimensions, and ni is the number of
elements in the ith lattice dimension. Next, we consider an array with T = 2 ×
3× 2 = 12 identical elements placed on a (d = 3)-dimensional cubic lattice as shown
in Figure 2.2 (a). Provided that the basis functions for each element are generated
consecutively in the order of each lattice dimension, as indicated with numbers on
each array element, we get the Multi-level Block-Toeplitz (MBT) MoM matrix as
depicted in Figure 2.2 (b), in which colors indicate the d = 3 levels. That is, the
MoM matrix consists of nd×nd BT matrices which themselves consist of nd−1×nd−1
BT sub-blocks, and so forth for the number of array lattice dimensions d. At the
inner-most level we have n1×n1 blocks of size s× s which do not, in general, possess
any special structure.

Notably, an MBT structure also arises if elements are placed regularly in a cylin-
drical coordinate system as depicted in Figure 2.2 (c)†. It is important to note that
for the interactions to be translational invariant in the cylindrical coordinate system,
each element must be sequentially rotated around the axis defined by i⃗3 (z-axis) such
that the sum of rotations going around in azimuthal direction equals 2π rad. This is
a consequence of the finite extent of the array elements when placed on the perimeter
of a circle. As shown in the example in Figure 2.2 (c), we have T = 1 × 7 × 2 = 14
element array which gives rise to 2× 2 BT matrices which themselves consist of 7× 7
already block-circulant (BC) matrices, see Figure 2.2 (d). As is the case for the cubic
lattice, the inner-most level also consists of arbitrary matrices without any special
structure.

For both cases, an MVP computational complexity close to O(N logN) can be
achieved by rearranging the sub-blocks at each level i ∈ {1, . . . , d} from Toeplitz
to circulant [84, sec. 4.7.7] stored in a 5 (or 4)-dimensional tensor C(m,n, j, k, l)
on a cubic (or rectangular) lattice, which will henceforth be denoted the circulant
generator. Herein, j ∈ {1, . . . , 2n1 − 1}, k ∈ {1, . . . , 2n2 − 1} and l ∈ {1, . . . , 2n3 − 1}
enumerate the rearranged blocks at the first (i = 1), second (i = 2) and third (i = 3)
block-circulant level, respectively. The indices m = {1, . . . , s} and n = {1, . . . , s}
enumerate MoM matrix entries at the lowest level. With the circulant generator
at hand the MVP becomes a discrete circular block convolution operation over the
indices (j, k, l), which can be accelerated via the FFT. For more implementation spe-
cific details, the reader is referred to [J1]. We note that an FFT-accelerated direct
solution would be possible‡ provided that the arbitrary blocks at the inner-most level
had Toeplitz property as well. Nevertheless, since the arbitrary blocks are inevitable
at the inner-most level, a quadratic computational complexity scaling arises in the
number of basis functions per element (s2). This holds true both for computing the

†Note that only one layer (ring) of elements is placed in the i⃗1-dimension for illustrative simplicity.
‡The solution to a linear system Cx⃗ = b⃗ in case C is (block-)circulant matrix can be found directly
via three d-dimensional discrete Fourier transforms (Fd) as x⃗ = F−1

d

{
Fd{⃗b}
Fd{c⃗}

}
, in which c⃗ is the

first row or column of C. This would allow an O(N log N) direct solution.
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Figure 2.2: Illustration of lattice arrangements which give rise to a multi-
level block-Toeplitz (MBT) matrix structure. (a) T = 2 × 3 × 2 = 12
elements on a rectangular (cuboidal) lattice, and (b) the associated MoM
matrix. (c) T = 1 × 7 × 2 = 14 elements on a cylindrical lattice with
(d) the associated MoM matrix. – Colors simultaneously indicate lattice
dimensions and the multi-levels of the resulting MoM matrix. Symbols
are used to indicate similar matrix blocks at the inner-most level. Note
that the illustration does not represent a discretized structure and that
the cube represents any volumetric scatterer described by a surface mesh.

FFT-accelerated matrix-vector product and for computing the unique blocks of the
MoM matrix during the setup phase.

The quadratic scaling may not be immediately apparent if the computational com-
plexity of ADM is expressed in the standard form O(sN log N

s ). Therefore, by using
(2.1), the MVP computational complexity can be reformulated in a more comprehen-
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sible manner as O(s2T log T ). On the one hand, this scaling is favorable in terms of
number of array elements T , making it well suited for electrically large arrays. On
the other hand, the number of basis functions on each array element must not be too
large due to the quadratic scaling in s. The same conclusions can be made for the
memory complexity of ADM, which is dominated by the storage of the circulant gen-
erator C, which amounts to an asymptotic memory complexity of O(s2T ) (or O(sN)).
For reference, this is a factor of T

2d less memory than that of full MoM. For a more
thorough explanation and analysis of the computational and memory complexities of
the setup-phase, MVP and iterative solution process of ADM, the reader is directed
to Appendix B. It is important to acknowledge that, although the memory scaling of
ADM is linear with respect to the number of array elements, the inherent quadratic
scaling with number of unknowns per element, s, may quickly deplete available re-
sources. Nevertheless, as we shall see shortly, by employing HO-hierarchical BFs, s
can be kept low (compared to ordinary first-order BFs) without impacting the solu-
tion accuracy, leading to both reduced memory consumption and computation time.
See definitions of memory consumption and computation time in Appendix D.

2.3 Higher-Order Basis Functions in ADM
In this section the implications and importance of combining higher-order basis func-
tions with the Array Decomposition Method (HO-ADM) is discussed. First, the
efficacy of employed basis functions is shown via a higher-order convergence study on
an array of spheres as well as on an array of cubes. Next, the efficiency of HO-ADM is
shown for a practical case of a 10× 10-element conical horn array. Lastly, we discuss
the implications of using HO basis functions with respect to the scaling of HO-ADM
and an existing fast method.

The use of higher-order basis functions is well-known to provide accurate ap-
proximations of the induced currents with fewer unknowns compared to lower-order
basis functions [85,86]. In the HO-ADM, curved quadrilaterals (i.e. mesh cells), also
referred to as quads, with parametrization r⃗(u, v) are used to discretize the geom-
etry [87], using the HO-hierarchical Legendre BFs from [88] to expand the surface
current density. For more details, the reader is referred to [17] and [J2]. The primary
advantage of these BFs lies in the application of the modified Legendre polynomials
P̃m(u) defined as

P̃m(u) =


1− u, m = 0
1 + u, m = 1

}
Doublets

Pm(u)− Pm−2(u), m ≥ 2
}

Singletons
, (2.2)

where m = {0, . . . , ρ} enumerates the different orders for a given quad and ρ is
the maximum BF order used in that quad. The modified Legendre polynomials
inherently satisfy current continuity between quads for orders m = 0, 1 and they
correspond to the usual roof-top BFs having support over two quads. In addition,
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local surface current density variations are modeled by a summation of ordinary
Legendre polynomials for orders m ≥ 2 which have support only within a single
quad.

Other BF-formulations, e.g. Rao-Wilton-Glisson [89] BFs on triangular cells can
be used as well. Nevertheless, by using quads (instead of triangular cells) only two
vectors (instead of three) are needed to represent the current, which, combined with
the choice of the HO BFs, enables better accuracy for the same number of unknowns.
Furthermore, it is worth noting that while the extension of ADM with interpolatory
HO BFs is possible, hierarchical BFs are generally favored due to the following reasons:

• Hierarchical bases allow for different expansion orders on different elements
in the same mesh. This allows for adaptive refinement, where the maximum
polynomial order ρ is chosen independently for each quad based on its electrical
size.

• Compared to interpolatory bases, hierarchical bases often lead to lower condi-
tion numbers, which can improve the efficiency of the iterative solution pro-
cess, [17].

2.3.1 Higher-Order Convergence
Besides the advantages already discussed, the use of higher-order basis functions is
also driven by the desire to achieve higher-order convergence, that is, the numerical
approximation error should theoretically behave as O(hρ) for h < 1, where h denotes
the mesh size [90]. This means that increasing the maximum polynomial order ρ, as
opposed to decreasing the mesh size, should always yield a lower error for the same
number of unknowns. This property has been verified for a single sphere for MoM [17]
and MLFMM [91]. In this dissertation, HO-convergence is verified also for an array
of scatterers using HO-ADM [J1].

The subsequent numerical tests of this chapter have been carried out on a laptop
and a computational server with specifications as outlined in Table E.1. The Gen-
eralized Minimal Residual (GMRES) iterative solver is used with a relative residual
error tolerance of 10−3. We note that for the remainder of this dissertation, the term
“computation time” refers to the total wall-clock time it takes for a given algorithm
to retrieve the desired solution. For HO-ADM, this means the creation of BFs, com-
putation of the circulant generator and its d-dimensional FFT, the preconditioner
generation and associated factorization as well as the iterative solution time. The
term “memory consumption” refers to the peak memory used during the execution of
a given algorithm. For HO-ADM, this implies storage of the circulant generator, the
Krylov subspace, and the entire preconditioner. The preconditioner used throughout
this chapter is the block-diagonal preconditioner MNC described in Section 3.3.

In Figure 2.3 two 5 × 5 arrays of PEC spheres and cubes are shown. The arrays
are illuminated by an x⃗-polarized plane wave propagating along the z-axis, and the re-
sulting normalized induced surface current densities of the center elements are shown
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Figure 2.3: Two 5 × 5 arrays illuminated by a plane wave propagating in
the negative z-direction. Zoom-in shows the induced normalized surface
current density calculated with HO-ADM for different polynomial orders
ρ = {1, 4}. The corresponding number of unknowns to achieve an equiva-
lent relative error of 1 % in the scattered far field is also shown. (a) PEC
sphere array with D = 5λ diameter (b) PEC cube array with L = 3.61λ
side length.

for BF orders ρ = 1 (normal roof-top basis functions) and ρ = 4. The spheres in
Figure 2.3 (a) have a diameter of D = 5λ while each cube in Figure 2.3 (b) has a total
surface area equal to that of a sphere resulting in a side length of L = D

2

√
2
3π = 3.61λ.

For both the spheres and cubes, h-refinement has been applied until reaching an
Equivalent Relative Error, Eq. (10) in [J2], in the scattered far-field which is less
than 1 %. It is immediately apparent that using fourth-order BFs (ρ = 4) qualitatively
yields a smoother approximation of the true induced current densities, and more im-
portantly, that less unknowns are needed when using fourth-order BFs compared to
ordinary roof-top BFs for both the sphere (Nsphere,ρ=4 = 58, 905 < Nsphere,ρ=1 =
157, 080) and the cube (Ncube,ρ=4 = 70, 686 < Ncube,ρ=1 = 235, 620).

A more quantitative analysis has been conducted with results shown in Figure 2.4
in which the relative far-field error ϵERE

† is plotted versus the discretization density hλ

(i.e. the number of unknowns normalized by total surface area in square wavelengths),
for four different fixed polynomial orders ρ = {1, 2, 3, 4}. For the purpose of showing
HO-convergence, the polynomial order has been fixed on all mesh cells‡.

For a discretization density hλ < 20, the use of polynomial orders greater than
1 (ρ > 1) does not lead to significantly improved accuracy for neither the array of
†The reference is a direct solution of the full HO-MoM matrix with high integration precision and
as fine a discretization as possible within memory limits of the available laptop (see Appendix E).

‡In practice, a heuristic adaptive approach based on electrical size is employed.
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Figure 2.4: Equivalent Relative Error ϵERE [J2] as a function of the dis-
cretization density hλ for a 5 × 5 array of spheres and cubes with the
same surface area, i.e. L = 3.61λ, D = 5λ.

spheres nor the array of cubes. However, once the discretization density exceeds hλ >
20, we start to observe a noticeable difference between results for various polynomial
orders. Particularly, when the discretization density is hλ > 100 in case of the sphere
array, the accuracy of the far-field for a polynomial order of ρ = 4 is about two orders
of magnitude better than that for a polynomial order of ρ = 1 for the same number
of unknowns. In addition, for higher polynomial orders, the slopes of the error curves
increase according to the theoretical prediction of O(hρ).

Interestingly, the array of cubes exhibits the expected HO-convergence behavior
only to a limited extent when the discretization density is moderately low, specifically
within the 10 < hλ < 40 range. Beyond this, particularly for hλ > 40, the HO-
convergence behavior is not observed. Although the use of higher orders ρ > 1 do
seem to decrease the relative error for a given number of unknowns, the slope of the
error curves for the cube array eventually follows that of the first-order BFs. A major
reason for this discrepancy could be that the singular current density near the edges
of the cubes (see Figure 2.3 (b)) is not readily captured by the employed non-singular
BFs.

In summary, higher-order convergence has been shown using the HO-ADM for an
array of spheres, but not for an array of cubes. It is, nevertheless beneficial to employ
HO BFs because they in any case provide higher accuracy than first-order BFs for
the same number of unknowns. Furthermore, as we shall see shortly, the use of HO
BFs provides significantly faster computation time and lower memory consumption
compared to the use of first-order BFs in the HO-ADM.
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2.3.2 Lower Computation Time & Memory Consumption

Inspired by the 100-element Eutelsat Quantum horn array in Figure 2.1 (f), we con-
sider the DRA with dimensions as depicted in Figure 2.5, which consists of 10 × 10
conical horn antennas fed by circular waveguides excited uniformly with the funda-
mental mode TE11. The induced surface current density has been calculated using
the HO-ADM on a laptop and the radiated far-field pattern has been compared to
a reference using the equivalent relative error εERE. The reference solution has been
generated by using the smallest mesh cells possible (h-refinement) with a maximum
BF order of ρ = 5, on the available server with specifications defined in Appendix E.

Figure 2.5: 10 × 10-element conical horn array inspired by the Eutelsat
Quantum array in Figure 2.1 (f). (a) Primary dimensions of the array
and radiating elements are shown in wavelengths. (b) The normalized
surface current density of the array.

Figure 2.6 shows the total computation time (left axis) and memory consumption
(right axis) in the HO-ADM using fixed BF orders from ρ = 1 to ρ = 4. The graph
distinguishes between the computation time spent during the initialization of HO-
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Figure 2.6: Computation time and memory consumption versus a fixed
BF polynomial order, using HO-ADM for the DRA of Figure 2.5. The
maximum mesh length required to reach a far-field relative error below
1 % for a given polynomial order is shown on the top horizontal axis.

ADM (setup-phase) and the time spent in the iterative solution process. For each
fixed order ρ, the mesh length l has been varied between l = 0.15λ and l = 1.0λ to
ensure an ϵERE in the radiated far-field forward hemisphere that is less than 1 %. Key
simulation data is tabulated in Table 2.1, including the number of mesh cells used,
total number of unknowns and the achieved equivalent relative error.

Polynomial
Order

ρ

Mesh
Cells

Total
Unknowns

N

Setup
Time

Relative
Error
ϵERE

1 288,400 574,000 77 % 0.97 %
2 54,000 429,600 48 % 0.49 %
3 22,400 400,000 35 % 0.25 %
4 6,000 190,400 38 % 0.92 %

Table 2.1: HO-ADM simulation data for the 10 × 10 conical horn array of
Figure 2.5. © 2023 IEEE
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For a fixed BF order of ρ = 1 (roof-top BFs), the mesh length had to be decreased
to l = 0.15λ† resulting in 288,400 mesh cells, corresponding to N = 574,000 unknowns,
to reach a relative far-field error of 0.97 %. Remarkably, in this case, the HO-ADM
uses 77 % of the total solution time (220 min) in the setup-phase, in which the unique
blocks of the circulant generator is calculated.

By increasing the polynomial order to ρ = 2, significantly less mesh cells (54,000)
are needed at the expense of more unknowns per mesh cell, resulting in a total of
N = 429,600 unknowns. This modest decrease in total number of unknowns from
ρ = 1 to ρ = 2 suggests that the nine times higher computation time 220 min for
ρ = 1 compared to 25 min for ρ = 2 is caused by the large number of integrals (and
Green function evaluations) to be computed for ρ = 1 and not to the same extent the
quadratic scaling in s.

The mesh is more refined for ρ = 2 and ρ = 3, resulting in a two and four times
lower error, respectively, than the solution for ρ = 1 and ρ = 4. This increased
accuracy is the primary reason for the relatively small decrease in total number of
unknowns, memory consumption and computation time from ρ = 2 to ρ = 3†.

A significant fourfold reduction in memory consumption, going from 47 GB to
11 GB, as well as a threefold reduction in computation time from 15 min. to 5 min. is
evident going from ρ = 3 with 22,400 mesh cells to ρ = 4 with 6,000 mesh cells. We
note that increasing the polynomial order above four for the present example does
not provide any additional benefits as higher orders ρ > 4 do not provide increased
accuracy.

In summary, the results clearly demonstrate the power of using HO BFs in com-
bination with ADM yielding an efficient solver which can be used in practice. This
is most clearly demonstrated going from BF order ρ = 1 to ρ = 4, where the total
computation time decreases by a factor of circa 40 and the memory consumption
decreases by a factor of about 10, making it possible to analyze a 100-element conical
horn array on a laptop in five minutes.

2.3.3 Computational Complexity in Higher-Order Schemes
While computational complexity, the asymptotic scaling of an algorithm, is a theoret-
ical measure which offers a good basis of comparison between methods, it abstracts
away the constants and practical considerations that affect the actual computation
time. In this section, we take a closer look at the actual computation time and mem-
ory consumption of HO-ADM and compare it to the state-of-the-art HO-MLFMM.
When looking at the actual scaling of algorithms, it is customary to plot computa-
tion time and/or memory consumption as a function of increasing total number of

†This mesh size is in line with the widely recognized l = λ/10 rule-of-thumb for a good compromise
between computational efficiency and solution accuracy for first-order BFs [92].

†It should be noted that since only the desired max mesh length can be specified for the meshing-
routine, the actual mesh sizes can only be varied in discrete steps. Consequently, the relative error
might end up lower than 1 %.
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Figure 2.7: Plane wave normally incident on an array of T PEC plates of
size 1λ × 1λ with inter-element distance of 1.5λ. There are s HO BFs on
each array element.

unknowns, N . There are, however, several approaches to increase the number of
unknowns for array antennas in higher-order schemes:

• Varying the mesh length h (h-refinement)

• Varying the polynomial order ρ (ρ-refinement)

• Varying the total number of array elements T

The first approach, h-refinement, is the only way to increase the number of unknowns
for a fixed array size T in traditional first-order schemes. For higher-order schemes,
increasing the polynomial order, ρ, offers an additional degree of freedom. This
means that the number of BFs per element, s, can be varied both through h- and
ρ-refinement. Finally, for arrays in general, the total number of array elements T can
be increased for fixed mesh size h and polynomial order ρ. Each of these approaches
can have significantly different influence on the practical scaling behavior of a given
algorithm as we shall see in the following.

The HO-MLFMM has a theoretical computational and memory complexity of
sT log(sT ), whereas HO-ADM has a theoretical computational and memory complex-
ity of s2T log(T ) and s2T , respectively. Consequently, HO-MLFMM and HO-ADM
should scale equally in computation time when increasing the number of array ele-
ments (T ) for a fixed number of BFs on each array element (s) and fixed polynomial
order. In the same case, the memory complexity of HO-ADM should theoretically
scale better than HO-MLFMM. Nevertheless, as we shall see shortly, the quadratic
scaling in s quickly makes the actual memory consumption of HO-ADM exhaust
available resources.

To assess the scaling of HO-ADM and HO-MLFMM we consider as example an ar-
ray of T PEC plates of size 1λ×1λ with inter-element distance of 1.5λ as in Figure 2.7,
which is illuminated by a normally incident plane-wave. In the first study, the total
number of unknowns, N , is varied by increasing the total number of array elements
T for three different constant numbers of BFs per array element s = {60, 496, 992}
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and for a fixed polynomial order of ρ = 2. Figure 2.8 shows the resulting computa-
tion time and memory consumption for HO-ADM and HO-MLFMM when run on the
compute server with specifications given in Appendix E.

(a)

(b)

Figure 2.8: Computation time and memory consumption for HO-ADM and
HO-MLFMM applied to the array of plates as seen in Figure 2.7 for con-
stant number of basis functions per array element s = {60, 496, 992} and
a constant polynomial order of ρ = 2. h-refinement is used to increase the
number of unknowns per array element, s.
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In Figure 2.8, we observe that in HO-ADM for s = 60 and 100 million unknowns,
the simulation takes 44 min with a memory consumption of 179 GB. Nevertheless, for
the same memory consumption but with s = 992, the HO-ADM can handle 17 times
less unknowns (circa six million unknowns) for which the simulation takes 32 min.
With almost the same memory consumption (155 GB), the HO-MLFMM is able to
solve a system of approximately 20 million unknowns in 170 min for s = 60, and four
times less unknowns (5 million unknowns) in 150 min for s = 992. As a result, for
the same total memory consumption, the HO-ADM can simulate arrays with more
elements, T , given that the same element discretization, s, is used. At the same time,
for the same T and s, the HO-ADM is faster than HO-MLFMM.

Another key observation is that the computation time for HO-ADM is 18 times
faster than HO-MLFMM for s = 60, whereas for s = 992 it is 10 times faster than
HO-MLFMM, which suggests that a break-even point in terms of computation time
exists. Here, it should be mentioned that the break-even value for s is strongly
problem-dependent; that is, it varies significantly with the complexity of the individ-
ual elements and how many array elements are considered. From our investigations,
we found that in terms of computation time the asymptotic break-even point, s∞ for
T → ∞ (infinite number of array elements) is on average in the order of 4,000 BFs
per element but can vary from 1,000 to 10,000 and even higher.

The break-even point between HO-ADM and HO-MLFMM in terms of memory
consumption is for the plate array around a thousand BFs per array element as seen
in Figure 2.9 (b). Keep in mind that for a fixed array element discretization, s can
be considered constant, hence the memory consumption of HO-ADM (O(s2T )) will
eventually become smaller than that of HO-MLFMM (O(sT log sT )). Unfortunately,
this happens beyond the problem sizes which are possible to simulate on the hardware
at hand. It is, however, worth noting that the MVP accuracy of the HO-ADM is
equivalent to that achieved by employing the full Method of Moments.

As a partial conclusion, because the computational complexity of HO-ADM and
HO-MLFMM remains the same for electrically large arrays (larger T ), the key advan-
tage of HO-ADM lies in a lower computational complexity constant, offering a more
time efficient performance in practice, with a solution accuracy identical to that of
full MoM.

Figure 2.9 shows the results of the second and third studies in which we fix the
total number of array elements to T = 50 × 50 = 2500 and vary the total number
of unknowns by both h- and ρ-refinement. In Figure 2.9 (a), we see that regardless
of using h- or ρ-refinement in HO-ADM, it uses the same memory and computation
time for a fixed number of unknowns, N . This is, however, for HO-MLFMM only
the case for a total number of unknowns less than 1 million, above which the com-
putation time between h- and ρ-refinement starts to diverge. We observe that with
a polynomial order above four the MLFMM computation time curve tends towards
a quadratic scaling. The main reason is that in case of finer mesh-discretization, the
MLFMM algorithm in general is able to do better spatial subdivisions (refine the Oc-
tree) which is not possible with a fixed discretization and increasing BF polynomial
order. Nevertheless, as it is seldom necessary to use ρ > 4 on all mesh cells, this scal-
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(a)

(b)

Figure 2.9: Computation time and memory consumption for HO-ADM and
HO-MLFMM applied to the array of plates as seen in Figure 2.7 for vary-
ing polynomial orders ρ = {1, . . . , 10} and constant mesh as well as for
varying mesh sizes with a constant polynomial order of ρ = 2. The num-
ber of basis functions per array elements, s, is increased by h-refinement
(green boxes) or ρ-refinement (red dots).

ing is not critical in practice. Here it should be mentioned that h- and ρ-refinement in
the HO-ADM results in a quadratic scaling in both cases, whereas this only happens
for HO-MLFMM in case of ρ-refinement for high BF orders.
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Focusing on ρ-refinement, we see that for N < 1 million the slope of the compu-
tation time curves for both HO-ADM and HO-MLFMM are close to the O(N logN)
asymptote which is expected for MLFMM but not for HO-ADM. This indicates that
the quadratic scaling of HO-ADM is not dominating the computation time for smaller
problems (N < 1 million). In terms of memory consumption, only the HO-MLFMM
follows the O(N logN) asymptote, whereas HO-ADM scales quadratically. If we
focus solely on h-refinement, we see that HO-ADM is around 13 times faster than
HO-MLFMM for a total number of unknowns less than 1 million. However, a break-
even point can be observed between HO-ADM and HO-MLFMM, both in terms of
computation time and memory consumption. In the first case, the break-even point
between HO-ADM and MLFMM is around s = 6000 BFs on each array element,
whereas the break-even point is around s = 1000 in terms of memory consumption.

In summary, numerical tests have verified that the combination of HO BFs with
the ADM, denoted HO-ADM, leads to more than an order of magnitude lower mem-
ory consumption and faster computation times compared to ADM employing tradi-
tional first-order basis functions. Furthermore, higher-order convergence has been
demonstrated for ADM in combination with hierarchical higher-order basis functions.
Lastly, the computation time of HO-ADM is shown to be more than an order of
magnitude shorter than HO-MLFMM using practical array element sizes. Lastly, the
memory consumption of HO-ADM is four times lower than that of HO-MLFMM for
small array elements s < 100, and on a par with HO-MLFMM for common array
element sizes, i.e. s ≈ 1000.

2.4 Summary
By combining HO BFs with the ADM, more than an order of magnitude lower mem-
ory consumption and shorter computation times can be achieved compared to ADM
employing traditional first-order basis functions. As an example, a 40 times reduc-
tion in total computation time and a ten times reduction in memory consumption
has been shown for a 100-element DRA of conical horns on a laptop resulting in a
computation time of five minutes.

HO-convergence has been verified using the HO-ADM for an array of spheres and
the use of HO BFs has been shown to provide higher accuracy than first-order BFs
for the same number of unknowns. For the same accuracy, it has been shown that
employing HO BFs in the HO-ADM reduces the total number of unknowns by a factor
of nearly three compared to first-order BFs.

In terms of computation time, the HO-ADM is over 10 times faster than the
HO-MLFMM for practical array sizes, with many BFs per element (s = 1000). The
memory consumption of HO-ADM is four times lower than that of HO-MLFMM for
small array elements with s < 100 HO BFs per element, and on a par with HO-
MLFMM for common array element sizes, comprising s ≈ 1000 HO BFs per element.



CHAPTER3
Connected & Sparse

Array Antennas
The HO-ADM, presented thus far, is not able to handle conduction currents flowing
between array elements. This is a significant limitation since it effectively excludes
arrays with a ground plane or other interconnecting features. Moreover, as the HO-
ADM requires the d-dimensional array lattice to be fully populated with identical
elements, thinned array antennas cannot be analyzed either. In this chapter, we
present extensions to the HO-ADM to expand its applicability to connected and/or
sparse array antennas.

The first part of this chapter (Section 3.1) briefly discusses the motivation for using
thinned array antennas, followed by a presentation of the essential extensions required
for their analysis. Hereafter, the performance of the extension to sparse arrays is
compared to HO-MLFMM. The second part of this chapter (Section 3.2) presents
the necessary extensions to allow for electrically connected elements, emphasizing
key preconditioner considerations essential for the practical functionality of HO-ADM.
The chapter concludes with various numerical validation examples, demonstrating the
practicality and efficiency of these extensions within the HO-ADM framework. The
most significant parts of the work in this chapter are presented in papers [J2], [C2]
which are found under Publications.

3.1 Extension to Sparse Arrays

Thinned array antennas are sparse arrays obtained by either terminating or removing
a substantial number of elements from uniformly spaced arrays [93]. The primary
motivation behind array thinning is to reduce cost and weight while maintaining
key far-field performance metrics like gain, beamwidth, and side lobe level [94–98].
Moreover, thinning can be driven by spatial constraints, especially in situations where
the outer elements of a regular array must be removed to fit within a specific boundary
[99–101]. For the remainder of this dissertation, the term “thinning” will specifically



28 3 Connected & Sparse Array Antennas

refer to the removal of any number of identical array elements from an array. Here
we note that the limitation of identical elements is addressed in Chapter 4.

Figure 3.1: Illustration of (a) T = 2 × 3 = 6-element generic array, and
the resulting multi-level block Toeplitz MoM matrix A with N = sT un-
knowns, (b) T = 2×3 = 6-element thinned array and with the correspond-
ing MoM matrix At after removing element four (E4). The colored blocks
indicate similar interaction matrices and the varying padding between
blocks is used to indicate the multi-level structure. The dashed rectangles
and lines indicate the block-rows and columns removed by thinning.

We take outset in the linear system of equations arising after applying the MoM
to the generic T = 2× 3 = 6-element regular array shown in Figure 3.1 (a)

Ax⃗ = b⃗, (3.1)

where A ∈ CN×N is the MoM matrix, x⃗ ∈ CN×1 is the unknown current coefficients
vector, b⃗ ∈ CN×1 is the excitation vector, and N is the total number of unknowns.
As already shown in Section 2.2, the FFT-acceleration of Ax⃗ is possible iff A has a
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multi-level block-Toeplitz structure, which is only the case for a fully populated array
lattice. In case we remove an element from the array, e.g. E4, we end up with a
smaller system of equations

Atx⃗ t = b⃗ t, (3.2)

where At ∈ CNt×Nt is the MoM matrix of the thinned array, x⃗ t ∈ CNt×1 is the
resulting thinned unknown vector, b⃗ t ∈ CNt×1 is the thinned excitation vector, and
N t is the total number of unknowns after thinning the array. But, more importantly,
the thinned MoM matrix At does not, anymore, possess the MBT property (see
Figure 3.1 (b)). In the following, we will explore how to retain an FFT-accelerated
MVP, even in the case of thinned arrays.

First, we note that the MoM matrix At of the thinned system is naturally a subset
of A, which in turn means that At can be obtained by removing block-rows and block-
columns from the original matrix A. Since we would like to keep the MBT property,
we cannot explicitly remove rows and columns from A. Thus, we instead zero the
unknown vector x⃗ and the MVP result v⃗ at appropriate positions to obtain the same
effect. Mathematically, imitating the removal of block-columns and block-rows can
be conceptualized with the following two steps

(1) v⃗ = A
u⃗︷ ︸︸ ︷

Za,b{x⃗} Removes block-column pertaining to element at (a,b)
(2) y⃗ = Za,b{v⃗} Removes block-row pertaining to element at (a,b)

, (3.3)

for which u⃗ = Za,b{x⃗} is a zeroing operator placing zeros at indices in the vector x⃗
pertaining to the removed array element at position (a, b) in the array lattice†. The
key point in this first step is that because u⃗ is of full length N , it can be multiplied
on the full MoM matrix A possessing the MBT property, effectively preserving the
FFT-acceleration. As an example, the consequence of multiplying A with Z2,2{x⃗}
is that the matrix blocks in column number four is effectively removed as illustrated
with the vertical red dashed rectangle in Figure 3.1 (a). From an electromagnetic
perspective, this can be interpreted as enforcing zero current-flow on E4. In addition,
the influence caused by the coupling fields from adjacent elements should be removed.
Consequently, the second step is to zero the MVP result as well, i.e. Z2,2{v⃗}. This
effectively removes block-row number four as depicted with the horizontal blue dashed
rectangle in Figure 3.1 (a). To summarize, the idea is to formulate the MVP for the
thinned system in terms of an MVP involving the full system as

Atx⃗ t def.= Za,b{AZa,b{x⃗}}, (3.4)

where it is implied that the resulting zero-entries are disregarded. Note that the
zero operator Z is used here for illustrative purposes. In practice, we provide only a
†Note that the operator Za,b does not require repeated application for each element removal e.g.
Z1,2Z2,2 . . ., as the u⃗ vector can be pre-configured once with zeros for all elements which should be
removed.
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selected subset of unknowns to the iterative solver as illustrated in Figure 3.2. The
critical aspect is here to ensure that the iterative solver correctly calculates the resid-
ual vectors used to build the Krylov subspace for the thinned system. To this end,
the residual vectors r⃗ t are formulated as

r⃗ t = C↓{⃗b}︸ ︷︷ ︸
b⃗ t

−C↓{AC↑{x⃗ t}}︸ ︷︷ ︸
Atx⃗ t

, (3.5)

where C is a specialized copy operator taking the thinned system unknowns x⃗ t and
placing them (C↑) at appropriate positions in the full vector, or removing them (C↓).

As seen in Figure 3.2, in each iteration the relevant unknowns are copied from the
thinned vector x⃗ t to the full vector u⃗ via the C↑ operator. Remark that zeros have
already been placed at the positions of the thinned elements prior to the iterative
solution phase. Next, the FFT-accelerated MVP v⃗ = AC↑{x⃗ t} is performed, and
the result is copied back via C↓ into v⃗ t. In this way, the unknowns pertaining to
the removed elements can be thought of as hidden from the iterative solvers perspec-
tive, and as a result the iterative solver will converge to the same solution as if the
ordinary MVP Atx⃗ t was applied. We note that this concept of hiding unknowns
from the iterative solver is not only useful for the analysis of thinned arrays but is
also important in allowing electrically connected arrays, which will be evident in the
following Section 3.2. Moreover, as discussed in more detail in Chapter 4, since hid-
den unknowns allow for the removal of selected features of the array element at any
desired position in the array lattice, non-identical array elements can be analyzed as
well.

Figure 3.2: Illustration of how the iterative solver performs an FFT-
accelerated MVP in each iteration in case of the thinned array in
Figure 3.1 (b) by hiding the unknowns pertaining to the removed element
number four from the iterative solvers perspective.
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An important implication of the outlined approach is that no matter how many el-
ements are removed from a given array, the HO-ADM needs to calculate the circulant
generator C (see Section 2.2) as if it was a fully populated array. In the limiting case
where all but one element is removed this incurs a large overhead in terms of both
computation time and memory consumption. This suggests that break-even points
between HO-ADM and HO-MLFMM exist for given thinning ratios Tex

T of excluded
elements, Tex, to total number of elements, T .

In Figure 3.3, the computation time for HO-ADM and HO-MLFMM as applied
to the array configuration in Figure 2.7 is shown for varying levels of thinning as well
as for different number of basis functions per array element s = {612, 1104, 2112}, for
an array comprising T = 20× 20 = 400 elements.

Figure 3.3: Computation time for HO-ADM and HO-MLFMM as applied
to the array of plates as seen in Figure 2.7 for varying levels of thinning
of the T = 20 × 20 = 400 elements.

For no thinning at all, that is Tex
T = 0 %, HO-ADM is 10 times faster than HO-

MLFMM with s = 612 basis functions per array element, and 6 times faster for
s = 2112, which is expected based on the results from Section 2.3.3.

As the array is increasingly thinned, the computation time for HO-MLFMM is seen
to steadily decrease and eventually converge to the time it takes to do a full MoM
of a single element. This is not the case for HO-ADM which has almost constant
computation time regardless of the amount of thinning for Tex

T < 80 %. For thinning
levels above Tex

T > 80 %, the computation time of HO-ADM is, however, seen to
decrease because the preconditioner gets more effective as an increasingly smaller
system is solved. In fact, eventually the employed block-diagonal preconditioner solves
the system in a single step. As a result, all HO-ADM curves eventually converge to
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the time it takes to do the setup-phase only, i.e. the calculation of the circulant
generator.

For s = 612 BFs per array element, using HO-ADM is not advantageous compared
to HO-MLFMM for thinning levels above Tex

T > 90 %, beyond which HO-MLFMM is
faster than HO-ADM. The threshold at which HO-MLFMM becomes faster than HO-
ADM shifts to Tex

T = 80 % thinning for s = 1104 and further decreases to Tex

T = 70 %
for s = 2112. Following this trend, a first-order extrapolation indicates that for no
thinning at all Tex

T = 0 %, the break-even point would occur for s ≈ 5500 which
corresponds to the break-even point found in Figure 2.9.

The memory consumption is around 4 GB for both HO-ADM and HO-MLFMM
for s = 612. As such, the break-even point in terms of memory happens already at
around s = 612 BFs per array element. The main reason is that the memory scaling
of HO-ADM scales quadratically in number of basis functions per element, and only
linearly in terms of number of array elements T . With an increased number of BFs
per element s = 1104, the memory consumption for HO-ADM is 13 GB, compared to
just 9 GB for HO-MLFMM. Furthermore, for s = 2112, the memory consumption for
HO-ADM increases to 50 GB, while HO-MLFMM only requires 36 GB.

In summary, by hiding unknowns from the iterative solver, array elements can be
excluded from the iterative solution process, thus enabling one to obtain the exact
same MoM solution as if those elements did not exist to begin with, while keeping
the FFT-accelerated MVP. For a typical number of basis functions per array element
(s ≈ 1000) and thinning no more than 80 % of the array elements, the HO-ADM offers
one order of magnitude faster computation time, albeit with a penalty of increased
memory consumption compared to HO-MLFMM. Note, however, that arrays are
typically thinned between 20 % and 50 % [94,95,102], which means that the HO-ADM
is faster than HO-MLFMM for most practical purposes.

3.2 Extension to Electrically Connected Arrays
When array elements become electrically connected, meaning that conduction cur-
rents can flow between them, the MoM matrix A loses its MBT property. This is
due to the necessity of associating doublet BF-coefficients on connected edges with
either one or the other array element. To address this issue, we have employed the
Discontinuous Galerkin Method (DGM) for surface integral equations [103].

3.2.1 Applying Discontinuous Galerkin in HO-ADM
The DGM is widely acknowledged for its efficiency in handling complex structures
comprising non-conformal discretizations with mesh elements of a wide range of elec-
trical sizes. This capability leads to a substantial reduction in both memory consump-
tion and computation time as evidenced by several studies such as [104–106]. This
dissertation introduces another application of DGM on conformal discretizations, fo-
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cusing on preserving the MBT property of the MoM matrix A. We refer the reader
to Appendix A.3 for a short introduction to DGM and [103] for more details.

Figure 3.4: Two patch elements at the corner of a larger ground-plane-
connected array. Half-doublet BFs are introduced on either side of the
boundaries between adjacent elements. Auxiliary unknowns, which are
appropriately placed half-doublets, are added on external edges to retain
the MoM matrix MBT property.

In essence, the DGM is able to enforce current continuity, in a weak sense†, be-
tween both conformal and non-conformal mesh cells via the addition of an extra
surface integral penalty term to the ordinary MoM. This is, however, at the cost of
an increased condition number of A. Therefore, the authors of [103] proposed to
lower the condition number of the resulting DGM MoM matrix to provide practical
iterative convergence, by introducing an extra boundary interior penalty stabilization
function IIP(β)

IIP(β) = β

k2

∫
Cpq

[n̂p· f⃗m
t (r⃗)][n̂q· f⃗n

b (r⃗)]dr⃗, (3.6)

in which β = 1
10h is a scalar depending on the average electrical mesh size h, k =

ω
√
µ0ε0 is the wavenumber with angular frequency ω, and µ0 and ε0 are the free

space magnetic permeability and electric permittivity, respectively. f⃗m
t is the mth test

function, f⃗n
b is the nth basis function, and r⃗ is a position vector along the common

edge Cpq between mesh cell p and q with in-plane outward normal unit vectors denoted
as n̂p and n̂q, respectively (see Figure 3.4).

In the HO-ADM, it is crucial to remove this interior boundary penalty term from
the formulation because of the opposite directions of the two normal vectors n̂{p,q},
when evaluated along the common edge Cpq. As a result, the BF-coefficients associ-
ated with each side are assigned opposite signs and the MBT property of A is lost.
Here, we note that since IIP is merely responsible for lowering the condition num-
ber, excluding it does not affect current continuity. Moreover, it has recently been
shown that its exclusion is feasible, and sometimes optimal, provided that proper
†“Weak” continuity means that the basis functions do not inherently (by construction) satisfy current
continuity.



34 3 Connected & Sparse Array Antennas

preconditioning is employed [105,107,108]. In Section 3.3, a suitable preconditioning
strategy is discussed and shown to ensure system stability even for electrically large
and connected arrays using HO-ADM.

As an example of how DGM is applied in the HO-ADM, Figure 3.4 shows two
patch array elements at the corner of a larger ground-plane-connected array. The
usual doublet BFs (full roof-tops) are split into half-doublets (marked with teal color),
but only at the edges shared by two quadrilaterals which are located on different array
elements. In this way, current continuity is strongly enforced on all edges except those
connecting two neighboring elements. Note that the introduction of half-doublets
involves some overhead as they increase the total number of unknowns. This is,
however, in practice not an issue as described in more detail in [J2, Sec. III.B.3].

The main point of introducing half-doublets and employing the DGM in HO-ADM
is that it allows us to distribute the BF-coefficients evenly between array elements.
Nevertheless, the described approach introduces a new challenge: the amount and
enumeration of BFs will now vary between elements, such as elements at the corners
of the array compared to those in the middle. Consequently, the DGM alone is not
sufficient to obtain an MBT MoM matrix, hence impeding an FFT-accelerated MVP.

3.2.2 Auxiliary Unknowns

To restore the MBT property of A, we need to make the self-interaction matrices of
all array elements equal. To this end, a number Naux of auxiliary BFs must be added
to the array elements that are located along the edges of the array, effectively treating
them as if they were fully surrounded by neighboring elements. A naïve approach
would be to add half-doublets on all edges which are not electrically connected to
neighboring elements and therefore are associated with only one mesh cell. This would
make self-interaction blocks for all array elements equal and restore the MBT property
of A, as discussed in more detail in [J2, Sec. III.B.2]. Nevertheless, minimizing
the number of auxiliary BFs is crucial, as the additional unknowns Naux introduce
overhead due to the necessity of computing and storing their interactions. Therefore,
a better approach has been devised which involves the identification of only strictly
necessary edges on which to place auxiliary unknowns (see details in Appendix C.1).

An important implication of adding auxiliary unknowns is that they alter the
Krylov subspace and therefore we end up solving a slightly different problem than
the intended. It is therefore crucial to omit the auxiliary BF-coefficients from the
solution space. To do so, the technique presented in Section 3.1 is applied to hide the
auxiliary unknowns from the iterative solvers perspective. As a result, the auxiliary
unknowns merely serve to preserve the MBT structure and are never solved for.

In summary, by introducing half-doublets at connected boundaries between array
elements (i.e. only on the ground plane for the patch array of Figure 3.4), using the
DGM to enforce current continuity and by introducing auxiliary unknowns which
are hidden from the iterative solver, electric conduction currents are allowed to flow
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between array elements while retaining the MBT property of the MoM matrix, per-
mitting an FFT-accelerated MVP.

3.3 Iterative Solution & Preconditioning
In the HO-ADM, an iterative solution procedure is inevitable because of the inac-
cessibility of the full MoM matrix A. While a variety of iterative solvers exist, in
the following, we focus mainly on the Krylov-subspace-based Generalized Minimum
RESidual (GMRES) [109, 110] method which is most frequently selected for its re-
liable convergence pattern [111]. We note that other solvers such as the BiConju-
gate Gradient Stabilized (BiCG-STAB) [112] method, Induced Dimension Reduction
(IDR(s)) [113] method, and the Symmetric Quasi-Minimal Orthogonal Residual (SQ-
MOR) [114] method have also been considered for HO-ADM. These methods have
been implemented and compared to GMRES with the following conclusions:

• BiCG-STAB is more sensitive to high condition numbers than a non-restarted
GMRES. The convergence pattern of BiCG-STAB can be erratic, making it
difficult to assess whether a solution can be obtained in reasonable time. Never-
theless, when BiCG-STAB converges, it does so at a rate similar to the GMRES.

• IDR(s) can offer as fast a convergence as non-restarted GMRES, but only for
small problems N < 10, 000 and with a proper choice of s. IDR(s) has a much
more unstable convergence pattern than BiCG-STAB and the optimal subspace
dimension size s cannot be determined a priori.

• SQMOR has a more stable convergence pattern than BiCG-STAB, but less
stable than GMRES. It uses only a single MVP per iteration (disregarding the
preconditioner), which generally makes it twice as fast as BiCG-STAB. Nonethe-
less, it only works for complex symmetric matrices and therefore only with the
EFIE operator.

BiCG-STAB and SQMOR, as short-recurrence solvers, use constant memory with-
out storing the full Krylov subspace history. However, GMRES was chosen for its
more stable convergence characteristics. More specifically, the restarted version of
GMRES was chosen for HO-ADM to balance effective memory consumption. This
choice, however, necessitates minimizing the number of iterations, which in turn de-
mands a highly effective preconditioning strategy.

The importance of the selected preconditioning method for HO-ADM is further
highlighted by its extension with the DGM, which results in a MoM matrix AD ∈
CND×ND which has more unknowns ND than the original matrix A ∈ CN×N . In addi-
tion to a larger system, combining HO-ADM with DGM as described in Section 3.2.1
is accompanied by a rise in the condition number. This is mainly due to the now
closely coupled half-doublet BFs but also due to the excluded interior stabilization
term IIP. As an example, an array of T = 5×5 = 25 connected PEC-plates with side



36 3 Connected & Sparse Array Antennas

length of 1λ, as illustrated in Figure 2.7, is created with an center-to-center distance
of 1λ such that conduction currents can flow between the elements. Doing so effec-
tively forms a (5λ)2 PEC-plate, which can be simulated as an array using HO-ADM
and as a normal plate in the full MoM.

Due to the DGM and auxiliary unknowns in HO-ADM, a total of ND = 5500
unknowns are needed, whereas N = 4900 unknowns are needed in the original MoM
matrix A. The resulting eigenvalue distributions of A and AD, as shown in Figure 3.5,
are seen to be fairly similar except for a band of near-zero eigenvalues which are
introduced in AD by the application of DGM. With normally incident plane-wave
excitation, solving the system with and without DGM unknowns requires 253 and 138
iterations, respectively, without using a preconditioner. This is also reflected in the
condition number which nearly doubles going from cond(A) = 1050 to cond(AD) =
2050.

Figure 3.5: Complex eigenvalue distributions for the MoM matrices for HO-
ADM (AD) and full MoM (A), resulting from the analysis of a T = 5λ×5λ
PEC-plate.

To tackle the increased condition number introduced by the extension of HO-ADM
with DGM, two different block-diagonal preconditioners have been examined in the
following. A left-preconditioned linear system of equations is assumed†

M-1Ax⃗ =M-1⃗b (3.7)

in which M represents a block-diagonal preconditioning matrix, with (MC) or with-
out (MNC) coupling terms from nearby elements. Note that M is never formed
explicitly, except for illustrative purposes in Figure 3.6 (a), nor applied to A directly.
†Note that the spectra of left, right and split preconditioning is identical, however since different
residuals are minimized for the three cases, different convergence is to be expected in practice [115].
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(a)

(b)

Figure 3.6: (a) Illustration of two block-diagonal preconditioners without
(MNC) or with (MC) coupling from nearby elements resulting from the
analysis of a T = 5λ × 5λ PEC-plate. (b) The resulting eigenvalue distri-
butions after applying them to the HO-ADM MoM matrix AD.

Due to the inherent MBT structure of A for a regular array, a constant-memory
block-diagonal preconditioner without coupling (MNC), as illustrated in Figure 3.6 (a),
has been shown to be highly effective for the ADM [69]. It is most efficiently con-
structed via an LU-factorization of the interaction matrix for a single array element
and applied to a vector via backward/forward substitutions.

However, in the case of connected arrays in the HO-ADM, a preconditioner with-
out near-field (NF) coupling no longer suffices. This is evident from Figure 3.6 (b) in
which the eigenvalue distributions are shown after applying both MNC and MC to
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the HO-ADM DGM MoM matrix AD. We see, that although MNC effectively low-
ers the condition number by a factor of four, going from 2050 to 543, there are still
eigenvalues with real part close to zero, and even eigenvalues in the left-half plane.
By, instead, applying MC, the eigenvalues are seen to be strictly away from zero.
Notably,MC is able to lower the condition number by almost a factor of 60, making
it possible to solve the (5λ)2 PEC-plate problem using GMRES in 11 iterations for a
normally incident plane-wave excitation†.

The efficacy of MC using the HO-ADM for larger PEC-plates is exemplified in
Figure 3.7, where the relative residual error ϵ, as defined in [J2, Sec.III.C], is plotted
versus the number of iterations for square plates with electrical sizes ranging from
(10λ)2 to (400λ)2.

Figure 3.7: Performance of the constant memory near-field (CNF) precondi-
tioner MC compared to the common block-diagonal preconditioner MNC.
Both are applied to the case of a normally incident plane wave on variously
sized PEC square plates which are constructed by electrically connecting
(1λ)2 quadrilateral mesh cells using HO-ADM.

The key takeaway from the data presented in Figure 3.7 is the comparative effi-
ciency of the two preconditioners for a (400λ)2-PEC plate with 6.4 million unknowns.
Whereas the MNC achieves a residual error of 10−3 after 1448 iterations, the NF-
coupling preconditioner MC reaches the same level of accuracy in just 41 iterations.
We note that the efficacy of MC extends beyond the presented examples. For an
in-depth analysis of these results, readers are directed to [J2, Sec.III.C.1].

In terms of memory usage, a general challenge with NF-coupling preconditioners
is that each block (including coupling terms) along the main diagonal has to be stored.
†We note that the effectiveness of the preconditioner MC, depends on the range of coupling terms
considered for each array element. For the HO-ADM, extending the inclusion beyond immediate
neighboring quads shows little improvement in convergence, hence only BFs on mesh cells with a
shared edge with neighboring elements are included in MC.
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For the HO-ADM, doing so would mean that the preconditioner memory consumption
would become proportional to the number of array elements T and even comparable
to the storage of the circulant generator C (see Section 2.2). Therefore, in order to
avoid almost doubling the required memory usage of HO-ADM, a constant-memory
NF (CNF) coupling preconditioner has been devised, based on the fact that many of
the preconditioner groups become redundant for connected regular arrays as depicted
in Fig. 4 of [J2]. As a result, for a non-thinned array, we have only nine unique pre-
conditioner groups to calculate and store, whereas we have a finite but slightly larger
set of 16 unique preconditioner groups for thinned arrays. The important point is
here that it is possible to construct a CNF preconditioner MC for simultaneously
connected and thinned arrays, by only building and storing at most 16 unique inter-
action matrices. Remark, in addition, that building the preconditioner groups does
not require additional computation of matrix blocks, since this information is already
contained within the Toeplitz storage format (the circulant generator C). In order
to take advantage of this, we provide in Appendix C.2 the formulas for the required
mapping A(p, q) → C(m,n, k, l) from global MoM matrix row p and column q to
circulant generator indices (m,n, k, l).

In summary, by introducing half-doublets at connected boundaries between array
elements, using the DGM to enforce current continuity and by introducing auxiliary
unknowns which are hidden from the iterative solver, electric conduction currents are
allowed to flow between array elements while retaining the MBT property of the MoM
matrix, permitting an FFT-accelerated MVP. Although this DGM strategy enables
an FFT-accelerated MVP, the iterative solution does not converge in a reasonable
number of iterations without introducing the NF-coupling preconditioner MC. Last
but not least, the identification of a constant memory construction ofMC makes the
extension to connected and sparse arrays feasible in practice.

3.4 Numerical Test Cases for Connected Sparse Arrays
To validate the efficiency of the extended HO-ADM, we first revisit the scattering
from a PEC plate and compare the scattered field to that of a full MoM. Next, we
examine the optimal mesh-size in HO-ADM when applied to a plate of fixed size but
with a varying number of array elements. Lastly, we consider a high-gain 32 × 32
all-metal antenna array based on the design from [77] and showcase the achieved
temporal efficiency of using the HO-ADM compared to HO-MLFMM. In this section
an equivalent relative error measure, ϵERE, as defined in [J2, Sec. IV], is used to
compare the fields calculated using HO-ADM and HO-MLFMM.

3.4.1 Plane Wave Incidence on Square PEC Plate
To validate the accuracy of HO-ADM, we have considered a plane wave obliquely
incident (θi = 30◦, ϕi = 0◦) on a square (40λ)2-sized PEC plate, as depicted in Fig. 6
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of [J2]. Therein, the scattered far field calculated with HO-ADM is also plotted, and
it is seen to coincide with the results of the HO full MoM solution within the full
dynamic range of 50 dB with an equivalent relative error of ϵERE = 0.01 %. We note
that even better accuracy could have been obtained by choosing a stricter relative
error tolerance than 10−3 for the iterative solver.

To validate the computational efficiency of HO-ADM, the total computation time
and memory consumption have been recorded and plotted in Fig. 7 of [J2], comparing
HO-MLFMM and the HO-ADM for increasingly larger plates† ranging from (10λ)2

to (620λ)2. The main conclusion from these simulations is that for a (620λ)2 PEC-
plate, the HO-ADM solves for the induced currents using N = 15, 376, 000 unknowns
in 6 min with a memory consumption of 18 GB, whereas HO-MLFMM uses N =
12, 300, 800 unknowns, 177 min and 90 GB of memory. Consequently, the HO-ADM
achieves almost a factor of 30 faster computation time and 5 times less memory
consumption, even though it uses more than three million (25 %) more unknowns
than HO-MLFMM. The reader is referred to [J2, Sec. IV.A.] for more details.

The above mentioned results were obtained by modeling the plates using multiple
array elements, each with size (1λ)2. This choice of a side length L = 1λ is based
on the findings presented in Figure 3.8. Herein, the computation time for the HO-
ADM is illustrated for a normally incident plane wave impinging on a PEC plate of a
constant size (320λ)2, but where the array element side lengths range from L = 0.1λ to
L = 5λ. From the perspective of HO-MLFMM, which uses around 45 min to solve this
problem, there is no notable difference in terms of computation time whether a side
length of L = 5λ or L = 0.1λ is used to model the (320λ)2-plate. However, because

Figure 3.8: Computation time used in HO-ADM for a normally incident
plane-wave on a PEC-plate of fixed size 320λ × 320λ but varying array
element sizes with side lengths between L = 0.1λ and L = 5λ.

†Note that the frequency is fixed, and the physical size is varied.
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of the computational complexity (O(s2T log T )) of HO-ADM, the computation time
is expected to vary as variously sized array elements require different number of BFs
per array element, s, as well as a varying number of array elements T .

For HO-ADM, in the scenario of array elements of decreasing electrical sizes, it
suffices to use less BFs per array element (s becomes small) to represent the surface
current density. However, to keep the fixed size of the plate at 320λ, more array
elements are needed (T becomes large). In this scenario, it is expected that HO-ADM
will perform better the smaller the array elements become, which is seen to be the
case for array element side lengths going from L = 5λ down to L = 1λ. Nevertheless,
as the array elements become smaller than L = 1λ, the computation time is seen to
increase, although the number of BFs per element, s, decreases. The primary reason
for this increase is the need for more Green’s function evaluations, which arises from
the growing number of mesh cells incorporating BFs of progressively lower orders. In
the HO-ADM, it is therefore of interest to keep the mesh cell size as small as possible
(due to s2 scaling), but preferably not smaller than L = 1λ. This holds true also for
cases other than that of a PEC plate.

3.4.2 All-Metal Dual-Band Phased Patch Antenna Array

In this section, we examine a 32 × 32-element dual-frequency RHCP high-gain an-
tenna array based on the design in [77]. The real-world fabricated array is shown
in Figure 2.1 (d). To showcase the thinning extension of HO-ADM, we also examine
the same array but thinned to conform to a circular rim as depicted in Figure 3.9 (b),
resulting in 793 array elements corresponding to a thinning percentage of 22.6 %. The
array elements are excited by wires, as indicated with light blue color in Figure 3.9 (a).
The meshing of the full 32×32 array consists of 122,880 mesh cells, leading to around
N = 975,000 unknowns in the HO-MLFMM method and around 1 M unknowns in
the HO-ADM due to the inclusion of DGM and auxiliary unknowns, as detailed in
Section 3.2.1. For the thinned array, the HO-MLFMM uses N = 755,370 unknowns,
whereas 18,312 (2.4 %) additional unknowns are needed in the HO-ADM.

The far-field radiation patterns for both arrays are evaluated at 8.425 GHz as
depicted in Figure 3.10. The peak directivity for the full array is calculated to be
38.44 dBi for both HO-ADM and HO-MLFMM, which is similar to the 38.5 dBi direc-
tivity reported in [77]. Moreover, the calculated co- and cross-polarization patterns
for both HO-ADM and HO-MLFMM are seen to be nearly identical, with relative er-
rors of 0.03 % and 0.05 % for co-pol and cross-pol, respectively. The radiated far-field
pattern for the thinned array in Figure 3.10 (b) shows a relative error of 0.05 % and
0.07 % for co-pol and cross-pol, respectively. The peak-directivity is 1.1 dB smaller at
37.3 dB for the thinned array, and the first side-lobe level at 19.9 dB is close to what
would be expected from a uniformly excited circular aperture. The 3 dB-beamwidth
is only 0.2◦ larger for the thinned array compared to the full 32×32 array. A compar-
ison of computation time and memory consumption for HO-ADM and HO-MLFMM
is presented in Table 3.1 for both the thinned and full 32 × 32 array. For the full
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(a) (b)

Figure 3.9: (a) 32×32-element dual-band right-hand circularly polarized
all-metal antenna array, including employed meshing of the element cell.
(b) Thinned 793-element all-metal array conforming to a circular rim.

array, the HO-MLFMM takes about 1 hour and uses 25.1 GB of memory, whereas
the HO-ADM reduces the computation time to approximately 6 minutes at the cost
of a slight increase in memory consumption. Notably, both methods use about half
of the total computation time in their respective setup-phases and both use roughly
the same number of iterations to reach a relative error of 10−3. Consequently, the
ten-fold reduction in computation time for HO-ADM stems not only from a 10 times
faster setup-phase, but also a 10 times faster MVP evaluation.

Method Total
Simulation Time

Memory
Consumption

Number of
Iterations

Time per
Iteration

HO-MoM N/A 3540 GB N/A N/A
HO-MLFMM 1 h 2 min

(57 min)
25.1 GB

(22.5 GB)
540

(567)
3.9 s

(3.8 s)
HO-ADM 6 min 18 s

(6 min 18 s)
28.2 GB

(28.2 GB)
481

(506)
0.4 s

(0.38 s)

Table 3.1: Total computation time and memory consumption for the 32×32
array in Figure 3.9 (a) and the corresponding circular-thinned array in
Figure 3.9 (b), comparing HO-MLFMM and HO-ADM. Results in paren-
theses are for the thinned array. © 2023 IEEE

In case of the thinned array the HO-MLFMM uses slightly less time 57 min,
whereas the total computation time for the HO-ADM in case of the thinned array is
unaltered at 6 min and 18 s. It is worth noting that the HO-ADM use the same mem-
ory for thinned arrays as if they were fully populated (as discussed in Section 3.1),
whereas HO-MLFMM uses nearly 6 GB less memory in the thinned case.
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Figure 3.10: Far-field directivity patterns (ϕ = 0◦-cut) at 8.425 GHz compar-
ing the HO-ADM to the HO-MLFMM for (a) the antenna of Figure 3.9 (a)
and (b) the thinned array of Figure 3.9 (b). Co-polarization is RHCP
whereas the cross-polarization is LHCP. 3 dB-beamwidths are marked
with dark-gray bands. The thinned array is 22.6 % thinned. The same
correspondence is seen for ϕ = 45◦ and ϕ = 90◦ cuts.

3.5 Summary

The HO-ADM has been extended to allow for the analysis of sparse array antennas
by using a technique to implicitly keep the MoM matrix for the fully populated array
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and by using a constrained Krylov subspace in the iterative solver. For a typical
number of HO BFs per array element (s ≈ 1000) and a typical thinning ratio of 40 %,
the HO-ADM offers one order of magnitude faster computation time albeit with a
modest penalty of increased memory consumption, compared to HO-MLFMM.

In addition, the HO-ADM has been extended to analyze arrays with electric con-
duction currents between elements by introducing half-doublets at connected bound-
aries, using the Discontinuous Galerkin Method (DGM) to enforce current continuity
and by introducing auxiliary unknowns to retain the MBT property of the MoM
matrix, permitting an FFT-accelerated MVP. This approach significantly increases
the condition number of the MoM matrix, rendering the conventional block-diagonal
preconditioner MNC ineffective. Instead, a near-field coupling preconditioner MC

has been constructed and applied in the HO-ADM, which for a numerical test case
with six million unknowns reduced the number of iterations from 1448 to 41. More
importantly, the identification of a constant-memory construction of the near-field
preconditioner MC is what makes the extension to connected and sparse arrays fea-
sible in practice.

Numerical tests confirmed the efficacy and accuracy of the proposed extensions
for a 32×32 = 1024-element all-metal antenna array designed for the Europa Lander
mission, which has been analyzed on a laptop within six minutes with one million
unknowns. For this case, the HO-ADM showcased a tenfold reduction in computation
time and a comparable memory consumption in comparison with HO-MLFMM.



CHAPTER4
Non-Identical &

Non-All-Metal Arrays
Up to this point, we have demonstrated that the combination of HO BFs with the
ADM (HO-ADM) enables fast and accurate analysis of both fully populated regular
(Chapter 2), connected, and sparse arrays (Chapter 3). In this chapter, we extend the
versatility of HO-ADM by enabling the analysis of arrays with non-identical elements
and arrays which are not made entirely of metal.

The first part of this chapter (Section 4.1) begins with a concise overview of the
applications of arrays comprising non-identical elements. Subsequently, it details
the required modifications to the HO-ADM, facilitating their analysis. With these
extensions at hand, the efficiency and accuracy is verified via a selection of numerical
examples. The second part of this chapter (Section 4.2) examines how the HO-ADM
is adapted to arrays with structures of finite thickness and non-metallic boundaries,
outlining the required modifications and exploring their implications on the method’s
performance and applicability.

4.1 Extension to Non-Identical Elements
In electromagnetics, arrays utilizing non-identical elements have practical applications
across various domains. Examples include transmitarrays [116–119], reflectarrays
[120,121], meta-surfaces [122,123], and even non-identical frequency selective surfaces
[124]. In addition, amplitude-tapering has been achieved using non-identical elements
[125, 126], and sequentially-rotated-element arrays [127–130] can also be considered
as arrays with non-identical elements. These diverse applications of non-identical
elements in electromagnetic array design emphasizes the need to extend the HO-ADM
to accommodate such arrays.

The primary reason that HO-ADM is not able to handle non-identical elements
stems from the requirement of the MoM matrix to be block-Toeplitz, which in turn
necessitates identical self-interaction matrices for all elements. Moreover, because the
calculation of these interactions is inherently based on the relative local coordinate



46 4 Non-Identical & Non-All-Metal Arrays

systems of the involved mesh cells, all array elements must be of the same size, shape,
and orientation.

4.1.1 The Super Unit Cell
To address this challenge, a strategy must be devised that maintains the appearance
of identical elements from the vantage point of the MoM matrix in HO-ADM, while
simultaneously yielding the solution of a non-identical array. The key concept intro-
duced to achieve this, as published in [C3], is the “Super Unit Cell” (SUC) which
is illustrated for two different examples of non-identical arrays in Figure 4.1. In the
following, we outline the steps required to develop and apply the SUC to simulate
non-identical arrays within the HO-ADM framework.

Figure 4.1: (a) Illustration of (1) a 3 × 3 array of rectangular patches of
different sizes and orientations and (2) a 4 × 4 array of arbitrary elements.
(b) The required super unit cells in the HO-ADM for the two non-identical
arrays. (c) The corresponding arrays of identical elements with mesh
regions which can be removed to transform each element to that of the
original non-identical element arrays.

First, we take outset in the array of 3× 3 = 9 non-identical rectangular elements,
as depicted in Figure 4.1 (1a) which comprises TNI = 3 distinctly different elements†,
each differentiated by color. The first step is now to superimpose the outlines of the

†Note that it can also be viewed as an array with only two distinct elements, because one type of
elements can be seen as a rotated version of the other.
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three distinct array elements on top of each other‡ as illustrated in Figure 4.1 (1c),
yielding in this case 11 individual regions which together form what will be denoted
the SUC. The fundamental idea is now to replace the original elements in the array
with the SUC, thereby converting it into an array of 3 × 3 = 9 identical elements
suitable for analysis using the HO-ADM.

For the array in Figure 4.1 (1a), a SUC with 11 distinct meshing-regions can be
constructed as shown in Figure 4.1 (1b), and if we assume, for now, that we can
selectively omit various regions from this SUC, we can effectively model non-identical
elements. For instance, the green central element of the array can be realized by
removing regions {2, 4, 5, 7, 8, 10} from the SUC. Similarly, its red rotated counterpart
can be realized by excluding regions {1, 2, 3, 4, 8, 9, 10, 11}. We note that the 4×4 = 16
element non-identical array in Figure 4.1 (2a) demonstrates that SUCs, only slightly
more advanced than that for the array in Figure 4.1 (1a), are capable of simulating a
broad range of diverse array elements.

The second step involves determining whether the initial regions of the SUC should
be further discretized according to their respective electrical sizes and/or based on
the maximum permissible mesh length. It also involves adapting the mesh to accom-
modate any excitation structures. Consequently, the initial regions constitute the
coarsest possible meshing of the SUC. We note here, that if the non-identical elements
in a given array are rather similar in size (as is often the case with reflectarrays), even
the coarsest SUC configuration will encompass numerous regions with small electrical
sizes. This scenario unavoidably leads to an increased number of unknowns as the
similarity between array elements increases. Consequently, the extension of HO-ADM
to non-identical elements will be more efficient the larger the dissimilarity between
the non-identical elements is†. Nevertheless, as will be discussed in the subsequent
section, for practical array cases with not too many distinct elements, HO-ADM
demonstrates superior computation times compared to HO-MLFMM.

Up to this point, we have assumed that any desired number of regions can be
excluded from the SUC at any position in the array lattice. In practice, this exclusion
is achieved via manipulation of the MVP by hiding unknowns from the perspective of
the iterative solver, using the technique of Section 3.1. More specifically, to remove
a SUC-region we need to hide all the singletons and all the doublets (roof-top BFs)
that have support in the removed region. An example array element is shown in
Figure 4.2 (a), which is generated from the SUC in Figure 4.1 (1b). To remove SUC-
regions {2, 4, 8, 10}, the singleton BFs which have support only within the removed
region need to be hidden. Moreover, the full roof-tops which is connected to these
regions should be hidden, effectively enforcing no current to flow across the associated
edges. Note that this technique allows to exclude any number of regions from each

‡Superimposing outlines of elements is equivalent to performing a mathematical union operation on
the boundaries of the unique elements in the array.

†It should be noted that there is the possibility that some of the regions become so small that dense
discretization break-down occurs [131], giving rise to a high condition number in the associated
MoM matrix, which could make the problem unsolvable with HO-ADM.



48 4 Non-Identical & Non-All-Metal Arrays

Figure 4.2: (a) Illustration of a possible realizable array element from
Figure 4.1 (1b) with its corresponding SUC (in light-gray). (b) The edges
on which doublet BFs (full roof-top BFs) need to be removed from the
SUC to realize that element.

array element, regardless of its position in the array, effectively allowing non-identical
elements to be analyzed as if it was an identical-element array in the HO-ADM.

In summary, non-identical elements are in the HO-ADM made possible through
the following three steps:

1. Union of element outlines: The outlines of the TNI distinct elements of a
given array are superimposed to form a SUC which can be placed at all array
positions. Regions can be removed from the SUC at any position in the array
to model the elements of the original array.

2. Meshing of SUC: The regions of the SUC are further discretized because they
often exceed the maximum permissible electrical size. This step also involves
adapting the mesh to accommodate any excitation structures.

3. Identification of Hidden Unknowns: For each of the T array elements, the
unknowns pertaining to edges across which current should no longer flow is iden-
tified and hidden from the iterative solver, using the technique of Section 3.1.

After completing the initial three steps, the circulant generator C is computed
for an array of SUCs. Because the non-identical array is realized through hiding un-
knowns in the iterative solution process, there is no need to recompute the circulant
generator for different configurations of non-identical elements which are compatible
with the given SUC. As such, the circulant generator can, in the case of non-identical
elements, be considered as a database of non-identical elements, which can be put
at any position in the array and simulated without recalculating C. Based on nu-
merous empirical tests, HO-ADM generally requires equal amount of time for both
the setup phase and the iterative solution process, which in turn means that utilizing
the database to simulate various non-identical element configurations can lead to a
speed-up of approximately a factor of two.
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4.1.2 Numerical Test Cases with Non-Identical Elements
In this section we present two numerical examples showcasing the capabilities of HO-
ADM after its extension to arrays with non-identical elements. The first example
is a 37-element thinned patch array on a 7 × 7 square lattice with extended ground
plane, which necessitates all the techniques presented in Chapter 2, Chapter 3 and
Section 4.1.1. The second example is a non-identical element patch array with 8 ×
128 = 1024 elements, which employs space-tapering to reduce the first side-lobe level
(FSLL). The subsequent numerical tests have been carried out on a laptop with
specifications as outlined in Table E.1. The GMRES iterative solver is used with a
relative residual error tolerance of 10−3 and a Krylov subspace maximum dimension
of 500†.

A) Thinned Patch Array with Extended ground plane

Figure 4.3 (a) shows a 37-element linearly polarized patch antenna array which has
been thinned to conform to a circular rim. In addition, the ground plane has been
extended beyond the bounds of the array elements, which from the perspective of
HO-ADM necessitates a non-identical element analysis.

Figure 4.3: (a) Illustration of a thinned 37-element linearly polarized patch
antenna on a 7 × 7 lattice, including main dimensions and wire-excitation
feed-points. The center element is not excited. The illustrated coordi-
nate system is employed for the far-field pattern evaluation for which
(θ = 90◦, ϕ = 0◦) corresponds to the positive x-axis. (b) The resulting
normalized total surface current density calculated using HO-ADM. —
Note that the shown discretization is not the simulation mesh.

†Note that a relatively large Krylov subspace dimension is employed because the preconditioner MC
is less effective in the case of non-identical elements.
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The array is excited by 36 independent wire excitations operating at 14 GHz,
as the center element is left unexcited for illustration purposes. The resulting nor-
malized total surface current density, as calculated with the HO-ADM, is shown in
Figure 4.3 (b). We note that because the wire excitations require holes in the radiat-
ing patches as well as in the ground plane, the associated SUC has been meshed with
extra quadrilaterals at those ends of the wires which are connected to the ground
plane.

Figure 4.4: Far-field co- and cross-pol directivity patterns at 14 GHz com-
paring HO-ADM to HO-MLFMM for the 37-element patch antenna ar-
ray of Figure 4.3. (a) E-plane patterns (ϕ = 0◦) (b) H-plane patterns
(ϕ = 90◦). The cross-pol field level in the E-plane is below −70 dB.
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In this way, current continuity can be enforced on the extended ground plane while
still allowing holes in the ground plane for the excited patches.

The array is meshed with 3,260 quadrilateral mesh cells, resulting in 57,027 un-
knowns for HO-MLFMM and 67,522 unknowns for HO-ADM, which corresponds to
s = 1378 BFs per array element. For this relatively small case, the total computation
time for HO-MLFMM is around 1 minute whereas HO-ADM uses 4 seconds, achieving
more than an order of magnitude speed increase†.

Figure 4.4 shows the co- and cross-polarization far-field patterns (ϕ= 0◦ and
ϕ= 90◦ cuts) for both HO-ADM and HO-MLFMM. Both methods report a peak
directivity of 23.1 dB and a first side-lobe level (FSLL) of −18 dB for the array. The
patterns from HO-ADM and HO-MLFMM show excellent agreement in both the E-
and H-plane.

B) Non-Identical 1024-element Patch Antenna

Next, we examine an 8×128-element linearly polarized patch antenna array, as shown
in Figure 4.5, with 1024 independent wire excitations operating at 1.75 GHz. This
array consists of 128 linear 8 × 1-element arrays with non-identical, space-tapered
elements designed to achieve amplitude tapering in the E-plane, thereby reducing the
FSLL. We note that this 2D array is an adaptation of the 1D array described in [125],

Figure 4.5: 8×128-element linearly polarized patch antenna, including il-
lustration of employed meshing for the reported results of a single space-
tapered row. The illustrated coordinate system is employed for the far-
field evaluation in which (θ = 90◦, ϕ = 0◦) corresponds to the positive
x-axis. © 2023 IEEE

†Because HO-ADM uses seconds to do full-wave simulations of small arrays T < 100, it can allow
for full-wave optimization with thousands of evaluations in reasonable time.
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and that each 1D array consists of four distinct elements, which results in the SUC
as depicted in Figure 4.5.

The entire structure is meshed with 55,296 quadrilateral cells, resulting in 440,736
unknowns for HO-MLFMM and 507,904 unknowns for HO-ADM. The higher number
of unknowns in HO-ADM is due to the specific meshing of the unit cell (as detailed in
Section 4.1) and the incorporation of DGM-unknowns (explained in Section 3.2). De-
spite the approximately 15 % increase in the number of unknowns with HO-ADM (see
Table 4.1), the total computation time is reduced from 29 minutes with HO-MLFMM
to 3 minutes with HO-ADM, achieving a tenfold speed increase. The speedup is even
greater for the MVP alone which is reduced from 4.9 s to 0.3 s per iteration (a factor
of 16).

Method Total
Simulation Time

Memory
Consumption

Number of
Iterations

Time per
Iteration

HO-MoM N/A 1443 GB N/A N/A
HO-MLFMM 29 min 7.2 GB 223 4.9 s

HO-ADM 3 min 7.9 GB 441 0.3 s

Table 4.1: Total solution time and memory consumption for the 8 × 128
array in Figure 4.5, comparing HO-MLFMM and HO-ADM. © 2023 IEEE

Figure 4.6 presents the co- and cross-pol far-field patterns (ϕ= 0◦ and ϕ= 90◦

cuts) for both HO-ADM and HO-MLFMM. Both methods yield a peak directivity of
37.9 dB and a FSLL of −18.5 dB for the array. The E- and H-plane patterns from
HO-ADM and HO-MLFMM show excellent agreement. The co-pol equivalent error,
εERE, is 0.4 % in the E-plane and 0.3 % in the H-plane. In the E-plane, the cross-pol
is below numerical precision, and in the H-plane, the cross-pol error, εERE, is 0.5 %
across the entire region of 360◦.

4.2 Extension to Non-All-Metal Arrays

Thus far, only purely metallic antennas have been considered, where individual el-
ements are either isolated (as in an array of horn antennas) or linked through a
ground plane (like in a patch array). This section addresses the problem of a non-
homogeneous background medium, brought about by the presence of several homo-
geneous dielectric regions (or substrates). In addition, the section deals with the
challenge of array structures with a finite thickness. Numerical examples are pro-
vided to validate and evaluate the performance of the presented extensions.

We note that the integral equation used here for objects with several dielec-
tric regions is the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formula-
tion [132–134]. It is able to handle an arbitrary number of homogeneous dielectric
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Figure 4.6: Far-field co- and cross-pol directivity patterns at 1.75 GHz com-
paring the HO-ADM to the HO-MLFMM for the 8 × 128-element patch
antenna array of Figure 4.5. (a) E-plane patterns (ϕ = 0◦) (b) H-plane
patterns (ϕ = 90◦). – Due to the very narrow lobe width in the H-plane
only the central 20◦-region is shown here.

regions with metallic/dielectric junctions, by exploiting the surface equivalence princi-
ple to place equivalent electric and magnetic currents on the surface, and by enforcing
tangential continuity of both the total electric and total magnetic field at the junc-
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tions∗. We emphasize that in the HO-ADM, the PMCHWT formulation is in itself
sufficient to support array elements made of dielectric materials, however, only when
the dielectric regions are not connected to adjacent array elements. In the following,
we present an extension which allows the HO-ADM to analyze connected structures
of finite thickness, which in combination with the PMCHWT formulation allows for
dielectric substrates.

4.2.1 Internal Walls & Equivalent Currents
To understand the challenge with dielectric substrates in the HO-ADM, one could
imagine a simple patch array of identical elements on a dielectric substrate described
by a surface discretization. While all the radiating patches of the array are identical,
their electromagnetic surroundings are not. A patch in the middle of the array is
surrounded by equivalent electric and magnetic currents only on the upper surface of
the array and possibly lower, if there is no ground plane. But, a patch at the edge of
the array also ”sees” equivalent currents on the lateral walls of the array, that is, along
the height of the substrate. Thus, the different elements, identical in topology and
materials, are subject to different boundary conditions. As a consequence, the MoM
matrix is no longer block-Toeplitz, and the HO-ADM cannot be directly applied.

The same challenge applies to the finite thickness plate with holes as depicted
in Figure 4.7 (1), which from an electromagnetic perspective consists of non-identical
elements. To overcome this problem and to recover the block-Toeplitz property, the
structure is first subdivided into four topologically identical elements (see Figure 4.7 (1)
and (2)). To also obtain identical elements from an electromagnetic point of view,
we let the internal walls radiate into the background medium, just as the external
lateral walls of the original structure. Consequently, additional equivalent electric
and magnetic currents are placed on the internal walls (see Figure 4.7 (2)), effectively
increasing the problem size. Nevertheless, with this approach, the array now consists
of identical elements, also from an electromagnetic point of view, and the associated
MoM matrix will again be block-Toeplitz.

Finally, the now identical elements are reassembled as shown in Figure 4.7 (3)
to obtain the original structure. However, by doing so, the equivalent currents on
internal walls are part of the simulation, erroneously simulating their radiation into
the background medium. Therefore, currents on internal walls must be excluded from
the simulation, which is achieved by utilizing the technique of Section 3.1. Now, what
remains is to ensure the continuity of the current over the edges where the individual
elements are connected on the top and bottom surfaces (red lines in Figure 4.7 (3)).
This is accomplished with the technique presented in Section 3.2, necessitating special
care to ensure that:

• the singleton BFs on internal walls and doublet BFs which have support on one
(or two) internal walls are hidden from the iterative solver (see Section 3.1).

∗The PMCHWT formulation degenerates into the usual EFIE operator for PEC, since here the
equivalent magnetic current is zero.
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Figure 4.7: Illustration of how (1) an electrically connected array structure
is split apart and (2) where equivalent electric and magnetic currents are
added on the internal walls to make each element identical. At this stage,
all lateral walls of the individual elements radiate into the background
medium. (3) The identical elements are put back together. The internal
equivalent currents are excluded from the simulation. Current continuity
is enforced with half-doublets and DGM, the red lines. On the top and
bottom surface, auxiliary DGM unknowns are placed at the orange lines.

• half-doublet BFs should be placed on those edges on which current continuity
should be enforced between array elements via DGM, i.e. all edges marked in
red in Figure 4.7.

• auxiliary DGM unknowns, as described in Section 3.2.2, are placed on outer
array elements on those edges (marked in orange) which would have been con-
nected if that element was completely surrounded by array elements.
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We note that although the BFs associated with the internal walls are excluded from
the iterative solvers perspective, they are not removed from the underlying full MoM
matrix. This implies that the circulant generator C must accommodate an increasing
number of internal wall BF interactions, leading to a progressively larger overhead
both in terms of memory consumption and computation time. Nevertheless, this
overhead can be significantly decreased in case of electrically thin structures, since
the use of a hierarchical basis allows to use lower (even only first) order BFs on the
internal walls. In addition, we note that the MoM matrix becomes asymmetric in case
of closed PEC structures and/or dielectrics, which effectively doubles the computation
time of the circulant generator (i.e. for the setup-phase in HO-ADM) compared to
infinitely thin open structures.

To validate the efficiency of the presented internal wall approach we consider
a plane wave obliquely incident on a finite thickness PEC plate with 2,500 holes
with a diameter of 0.35λ0, as shown in Figure 4.8. The structure is analyzed as a

Figure 4.8: Illustration of a plane wave obliquely incident on a 50 × 50 =
2,500-element finite thickness PEC plate with holes with a diameter of
0.35λ0. The structure is analyzed as an array of identical elements in
the HO-ADM, in which the internal walls have been excluded from the
simulation.

Method Total
Simulation Time

Memory
Consumption

Number of
Iterations

Time per
Iteration

HO-MLFMM 68 min 18.1 GB 58 8.4 s
HO-ADM 4 min 15.2 GB 165 0.5 s

Table 4.2: Total solution time and memory consumption for the 50 × 50
array in Figure 4.8, comparing HO-MLFMM and HO-ADM.
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50 × 50 = 2500-element array of identical elements in the HO-ADM with a mesh
comprising 120,000 quadrilateral mesh cells, resulting in N = 1,140,000 unknowns.
In HO-MLFMM, the structure is modeled with 80,800 mesh cells and N = 646,400
unknowns. From Table 4.2 it is evident that despite HO-MLFMM using almost only
half the number of unknowns compared to HO-ADM, the total computation time
for HO-MLFMM is 68 min whereas HO-ADM uses 4 min. In addition, the memory
consumption of HO-ADM is circa 15 GB whereas HO-MLFMM uses around 18 GB.
It is important to recognize that the notably longer setup time for HO-MLFMM
primarily stems from the substantial number of interactions included in the near-field
interaction matrix, a consequence of the array elements’ small electrical dimensions.

4.2.2 Numerical Test Case with Non-All-Metal Array
To validate the accuracy of the internal wall method in case of dielectrics, we con-
sider a Gaussian beam† illumination of 400 PEC cylinders with a diameter of 0.2λ0
embedded in a 0.15λ0-thick dielectric layer with permittivity of εr = 3.0, as shown
in Figure 4.9.

Figure 4.9: Illustration of a 20 × 20 = 400-element array of PEC cylinders
with a diameter of 0.2λ0 embedded in a 0.15λ0-thick dielectric layer with
a permittivity of εr = 3.0, including the SUC used for analysis in the
HO-ADM.

In the HO-ADM, the structure is analyzed as a 20 × 20 = 400-element array of
identical elements via the SUC depicted in Figure 4.9, with a mesh comprising 28,800
quadrilateral mesh cells, resulting in N = 422,400 unknowns. In HO-MLFMM, the

†The Gaussian beam feed is a Huygens point source radiating a tapered beam, the field of which is
similar to that of a real corrugated feed horn. In this case, with a field taper of −20 dB at θ = 30◦.
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Figure 4.10: Co-pol scattered far-field ϕ = 180◦-cut for an obliquely incident
(θi = 30◦, ϕi = 0◦) y-polarized Gaussian beam feed on the 20 × 20 = 400-
element array from Figure 4.9, comparing the HO-ADM to HO-MLFMM.

structure is modeled with 22,720 mesh cells and N = 267, 520 unknowns. The total
computation time for HO-ADM is 11 min while HO-MLFMM is more than an order
of magnitude slower.

Figure 4.10 shows the co-polar scattered far-field calculated with the HO-ADM
and the HO-MLFMM for the ϕ= 180◦ cut with no significant difference between the
two simulations. The equivalent relative error εERE is 0.7 % across the entire region of
360◦. A similar equivalent relative error is observed in the ϕ= 45◦ and ϕ= 90◦ planes.

4.3 Summary
The HO-ADM has been extended to analyze arrays with non-identical elements by
introducing the concept of a Super Unit Cell (SUC) and by hiding unknowns from the
iterative solution process, effectively allowing the analysis of non-identical elements
while retaining an FFT-accelerated MVP.

In addition, by combining all the techniques from Section 3.1, Section 3.2, and
Section 4.1.1, an FFT-accelerated rigorous analysis of a 37-element thinned and con-
nected patch array with extended ground plane is made possible. In addition, an
8 × 128 = 1024-element patch array can be analyzed in a matter of three minutes
compared to half an hour for HO-MLFMM.

To analyze arrays where the elements are connected through a dielectric substrate,
the concept of internal equivalent electric and magnetic currents has been introduced
to maintain the block-Toeplitz property of the MoM matrix. By carefully exclud-
ing BFs associated with these internal equivalent currents, the HO-ADM is able to
accurately and efficiently simulate the original structure.
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The results show that by using the HO-ADM, an order of magnitude computa-
tional speed-up is achievable for arrays with non-identical elements compared to HO-
MLFMM, while maintaining a memory consumption comparable to HO-MFLMM.
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CHAPTER5
Summary &
Conclusions

In this study, a fast, accurate yet versatile computational analysis technique, denoted
the Higher-Order Array Decomposition Method (HO-ADM), has been developed for
electrically large arrays for space applications.

As a first step, a survey of existing literature on fast surface integral equation
techniques for electrically large arrays was presented. Based on this survey, it was
found that even though many of the existing fast methods are already well-suited
to accelerate the analysis of general electrically large arrays, they are all based on
analytical and/or physical approximations in the calculation of the matrix-vector
product (MVP). Despite their error-controllability, the Array Decomposition Method
(ADM) stands out as a full-wave solver because it is based on an exact MVP. For this,
the ADM exploits the multi-level block-Toeplitz (MBT) property of the MoM matrix,
permitting an FFT-accelerated and therefore exact MVP. Nonetheless, its inability
to cope with aperiodic arrays, interconnecting geometry, and non-identical elements
presented notable impediments which have been resolved in this dissertation.

After implementing the boundary integral part of ADM, it was combined with
higher-order (HO) hierarchical Legendre basis functions (BFs). HO-convergence was
verified using the HO-ADM for an array of spheres and the use of HO BFs was shown
to provide higher accuracy than first-order BFs for the same number of unknowns.
For the same accuracy, it has been shown that employing HO BFs in the HO-ADM
reduces the total number of unknowns by a factor of nearly three compared to first-
order BFs. In addition, numerical tests clearly demonstrated the power of using
HO BFs in combination with ADM which generally yields an order of magnitude
reduction in both computation time and memory consumption. As an example, a
40 times reduction in total computation time and a ten times reduction in memory
consumption has been shown for a 100-element DRA of conical horns on a laptop
resulting in a computation time of five minutes.

Comparing the HO-ADM to a state-of-the-art HO-MLFMM implementation, the
computation time of HO-ADM was further shown to be more than an order of mag-
nitude faster for arrays with a large number of HO BFs per array element (s ≈ 1000).
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The memory consumption of HO-ADM was shown to be one fourth of HO-MLFMM
for array elements with s < 100, and on a par with HO-MLFMM for array elements
comprising s ≈ 1000 HO BFs per array element. Bear in mind that this performance
is attained while maintaining an exact MVP.

The HO-ADM was extended to allow for the analysis of sparse array antennas by
using a technique to implicitly keep the MoM matrix for the fully populated array
and by using a constrained Krylov subspace in the iterative solver. We highlight that
the latter technique was also crucial for the subsequent enhancements of HO-ADM
to arrays with connected and non-identical elements. For a typical number of HO
BFs per array element (s ≈ 1000) and a typical thinning ratio of 40 %, the HO-ADM
offers one order of magnitude faster computation time albeit with a modest penalty of
increased memory consumption, compared to HO-MLFMM, as shown for a practical
793-element thinned dual-frequency RHCP antenna array.

The HO-ADM was extended to allow for arrays with electrical conduction cur-
rents between elements by introducing half-doublets at connected boundaries, using
the Discontinuous Galerkin Method (DGM) to enforce current continuity and by
introducing auxiliary unknowns to retain the MBT property of the MoM matrix, per-
mitting an FFT-accelerated MVP. Nevertheless, this approach significantly increased
the condition number of the MoM matrix, rendering the conventional block-diagonal
preconditioning technique ineffective. Instead, a near-field coupling preconditioner
was constructed and applied in the HO-ADM, which for a numerical test case with
six million unknowns reduced the number of iterations by a factor of 35, going from
1448 to 41 iterations. More importantly, the identification of a constant memory
construction of the near-field preconditioner for arrays is what made the extension
to connected and sparse arrays feasible in practice. Numerical tests confirmed the
efficacy and accuracy of the proposed extensions for a 32 × 32 = 1024-element all-
metal antenna array designed for the Europa Lander mission, which was analyzed on
a laptop within six minutes with one million unknowns. For this case, the HO-ADM
showcased a tenfold reduction in computation time in comparison with HO-MLFMM.

The HO-ADM was further extended to arrays with non-identical elements by intro-
ducing the concept of a Super Unit Cell (SUC) from which individual mesh regions
could be excluded from the iterative solution process. This approach unavoidably
leads to an increased number of unknowns, especially in the case of increasing simi-
larity between the non-identical array elements. Nevertheless, the results show that by
using the HO-ADM, an order of magnitude computational speed-up compared to HO-
MLFMM is achievable even for arrays with non-identical elements, while maintaining
a memory consumption comparable to HO-MFLMM. For example, the analysis of a
8 × 128 = 1024-element patch array with non-identical elements can be solved with
HO-ADM in three minutes compared to half an hour for HO-MLFMM. Furthermore,
the extension to non-identical elements combined with all other presented extensions
allowed for the analysis of e.g. a 37-element thinned and connected patch array with
a ground plane extending beyond the bounds of the array.

Finally, the analysis of connected and finite thickness structures, including dielec-
tric substrates, was made possible by introducing the method of internal walls and
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internal equivalent currents, and by employing the Poggio-Miller-Chang-Harrington-
Wu-Tsai (PMCHWT) integral equation formulation. The results show efficient and
accurate analysis of a 20 × 20 = 400-element array of PEC cylinders embedded in a
dielectric substrate. Moreover, a finite thickness PEC plate with 2500 holes could be
analyzed as a 50 × 50 = 2500-element array of identical elements in the HO-ADM
with a total computation time of four minutes, compared to 68 min for HO-MLFMM.

In conclusion, the techniques described in the present dissertation allow for the
rigorous solution of electrically large arrays, with at least an order of magnitude faster
computation time than a state-of-the-art HO-MLFMM implementation, paving the
way for more innovative and efficient solutions of electrically large arrays for space
applications.
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Array Decomposition Method for Arbitrary-Element
Regular Arrays using Higher-Order Basis Functions

Magnus Brandt-Møller, Michael Mattes, Olav Breinbjerg, Min Zhou, Oscar Borries

Abstract—The full-wave Array Decomposition Method for reg-
ular antenna arrays with arbitrary elements using higher-order
hierarchical basis functions is investigated. We show that the use
of higher-order basis functions results in significantly reduced
memory consumption and computation time for a 10× 10
element conical horn array with an aperture size of 22λ× 22λ,
without the need for analytical nor numerical approximations. In
addition, we demonstrate that by employing higher-order basis
functions, the far-field error is considerably lower than by using
common first-order basis functions for the same total number of
unknowns.

Index Terms—finite arrays, higher-order basis functions, full-
wave, block toeplitz, higher-order convergence

I. INTRODUCTION

ANTENNA arrays have customarily been used as feeds
for reflector-based systems and in radar applications.

With the current trend to move from large spacecrafts in the
geostationary orbit (GEO) to smaller spacecrafts in low earth
orbits (LEO), and a concurrent demand for flexible in-orbit
configurations, electrically large direct radiating arrays (DRA)
are becoming more frequently used for space missions. In
this regard, traditional design approaches based on embedded
element patterns and array factors or variants thereof have
become inadequate, primarily due to their inaccurate modeling
of edge and mutual coupling effects. For the typically more
densely packed elements in DRA, it is important that mutual
coupling effects are taken into account, which together with
stringent performance requirements in space substantiates the
necessity of rigorous full-wave numerical methods.

Traditional full-wave methods, e.g. the Method of Mo-
ments (MoM), suffer from excessive memory consumption
and computational complexity, O(N2) and O(N2)−O(N3)
respectively, where N is the number of unknowns. A range
of methods have been proposed for more efficient analysis of
electrically large arrays, in which the memory consumption
and computational complexity become O(N logN). Examples
include the Multi-Level Fast Multipole Method (MLFMM) [1],
[2], [3], the Adaptive Integral Method (AIM) [4] [5], and the
pre-corrected Fast Fourier Transform (pFFT) [6], and variants
hereof [7]. These methods are well suited to accelerate the
analysis of general arrays. In the case of regular antenna
arrays, the efficiency can be increased even further, both in
terms of reduced memory consumption and computation time,
by exploiting the regularity of the geometry [8].

The present work concerns the full-wave MoM solution of
electrically large regular antenna arrays with arbitrary perfect

Manuscript created July, 2022; This work was developed by XXX...

electrically conducting (PEC) volumetric antenna elements,
which is a common configuration for modern antenna arrays.
Using the Array Decomposition Method (ADM), the trans-
lational invariance of the free-space Green function, together
with the regular (e.g. rectangular, triangular or circular) geo-
metrical lattice of the array and a consecutive basis functions
(BF) numbering, the resulting MoM matrix becomes multi-
level block-Toeplitz [9] which allows for a Fast Fourier Trans-
form (FFT)-accelerated matrix-vector product (MVP) [8], [10]
in the iterative solver. It is, however, known that both the
computation time and memory consumption of ADM scales
as the square of the number of basis functions per array
element [10]. Consequently, it is of interest to keep the number
of basis functions as low as possible for a fixed solution
accuracy. Several approaches have been proposed to reduce
the quadratic dependency on the number of basis functions
on each array element [11], [8]; they are, however, based on
error-controllable approximations.

We demonstrate how the number of basis functions per
array element can be reduced using hierarchical higher-order
(HO) basis functions [12], while retaining the desired solu-
tion accuracy. By using HO-BF in combination with ADM,
a significant reduction in computation time and memory
consumption can be achieved. Two test cases are used to
demonstrate the benefits of higher order basis functions. The
HO-ADM is applied to a 10× 10 (22λ× 22λ) conical horn
array, resulting in much lower computation times compared
to the ADM using first-order basis functions. We also apply
HO-ADM to analyze the scattering from a 5× 5 array of
PEC spheres and look at the solution error as a function of
the total number of unknowns. By increasing the polynomial
order, the far-field solution error is considerably lower than
by employing first-order basis functions, for the same total
number of unknowns. We note that this is the first time, to the
knowledge of the authors, such higher-order convergence [13]
has been demonstrated using the ADM in combination with
hierarchical higher order basis functions.

The paper is organized as follows. Section II outlines the
mathematical foundation of the ADM. Section III reviews the
employed basis functions and showcases higher-order conver-
gence for an array of PEC spheres. Section IV investigates a
direct radiating array, demonstrating the increased efficiency
using HO-BF. Conclusions are given in Section V.

II. THE ARRAY DECOMPOSITION METHOD

This section outlines the boundary integral (BI) part of
ADM [14] from a matrix algebraic perspective with the pur-
pose demonstrating its implementation. We take outset in an
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arbitrary volumetric antenna array of identical elements, which
are placed on a d-dimensional regular lattice, and write the
total number of unknowns as

N = s
d∏

i=1

ni = sT , (1)

where s is the total number of basis functions (unknowns)
on each array element, d is the total number of array lattice
dimensions and ni is the number of array elements in each
dimension i. T = n1n2 . . . nd is the total number of array
elements. Due to the translation symmetry of the 3D free-space
Green function, the regular lattice on which array elements are
placed, as well as consecutively ordered basis functions, the
MoM matrix A ∈ CN×N becomes multi-level block-Toeplitz
of d+1 levels. That is, A consists of n1 × n1 block-Toeplitz
(BT) matrices which themselves consist of n2 × n2 BT sub-
blocks, and so forth for the number of array lattice dimensions
d. The last level d+ 1 contains, in general, an asymmetric s×s
square matrix containing the basis/test function interactions
between the array elements.

The speed-up of ADM comes from an expedited matrix-
vector product combined with an iterative solver. The core
of ADM can algebraically be regarded as extending the sub-
blocks at each level i = 1, . . . , d from Toeplitz to circulant
blocks [15, sec. 4.7.7], excluding the blocks at the inner-most
level which, in general, do not possess any special symmetry.
The extended MoM matrix, AC , formally increases the number
of unknowns Ñ as

Ñ = s
d∏

i=1

(2ni − 1) ≈ 2dN. (2)

The additional unknowns are eventually disregarded, and are
as such merely a mathematical trick to allow for the circulant
extension. We note that an antenna array on a 1-, 2-, or
3-dimensional regular lattice, results in about 2-, 4-, or 8
times as many unknowns, respectively. Nevertheless, as it
will soon become clear, the circulant property allows for a
significant reduction in both matrix storage and computational
complexity.

Starting with the simpler example (s = 1, d = 2, [n1, n2] =
[2, 2]), AC assumes a block-circulant with circulant-blocks
(BCCB) structure:

AC =



c⃗ 1


a1a2
a3

a3 a2
a1 a3
a2 a1

a7 a9 a8
a8 a7 a9
a9 a8 a7

a4 a6 a5
a5 a4 a6
a6 a5 a4

c⃗ 2


a4a5
a6

a6 a5
a4 a6
a5 a4

a1 a3 a2
a2 a1 a3
a3 a2 a1

a7 a9 a8
a8 a7 a9
a9 a8 a7

c⃗ 3


a7a8
a9

a9 a8
a7 a9
a8 a7

a4 a6 a5
a5 a4 a6
a6 a5 a4

a1 a3 a2
a2 a1 a3
a3 a2 a1


, (3)

in which the entries of the original MoM matrix A are marked
with an underline. Since circulant matrices are uniquely de-
fined by their first row/column, we only need to store the first
columns c⃗ p of size (2n1−1)×1 of each circulant block where
p = 1, . . . , 2n2− 1 denotes the index of the circulant block at

the second level. The actual number of matrix entries to store
become s2

∏d
i=1(2ni−1) ≈ 2ds2T which is linear rather than

quadratic in the number of array elements T , compared to the
ordinary MoM.

The unique information of the extended-MoM matrix is
stored in a (d = 2)-dimensional matrix C, which amounts
to the first block columns c⃗ p of AC

C =
[⃗
c 1 c⃗ 2 c⃗ 3

]
∈ C(2n1−1)×(2n2−1). (4)

The entries in the MVP, V, of the circulant-extended MoM
matrix AC with a given vector x⃗, can be expressed as a (d =
2)-dimensional circular convolution

V = C⊛X, (5)

in which X is a (d = 2)-dimensional matrix of the same size
and dimensions as C in which the only non-zero elements are
the original unknowns placed at the indices X1 ... n1,1 ... n2 .
Through the circular convolution theorem, the (d = 2)-
dimensional discrete circular convolution can be expressed in
terms of the discrete Fourier transformation as

V = F−1
2

F2


a1 a4 a7a2 a5 a8
a3 a6 a9

⊙F2


x1 x4 0
x2 x5 0
0 0 0


 , (6)

where F2 denotes the 2-dimensional discrete Fourier transform
and ⊙ denotes the Hadamard operator, i.e. element-wise
multiplication. Hereafter, the entries U of the desired matrix-
vector product u⃗ = Ax⃗, is readily available by accessing the
sub-matrix U = V1 ... n1,1 ... n2

∈ Cn1×n2 , after which the
column vector u⃗ is obtained by interpreting the contiguous
memory column-major matrix U as a one-dimensional vector.

In the more general case where (s > 1, d = 2, [n1, n2] =
[2, 2]), the unique entries ak of AC for k = 1, . . . , Ñ
themselves become matrices ak ∈ Cs×s with entries denoted
by am,n

k , while the vector entries xk become column vectors
x⃗k ∈ Cs×1 with entries enumerated as xn

k . Since the inner-
most ak blocks do not, in general, possess any special sym-
metry they cannot be accelerated by the FFT. Consequently, in
order to obtain the full MVP entries V, several matrix-vector
products Vm need to be computed for each m = 1, . . . , s
by summation of Hadamard products over n = 1, . . . , s as
follows

Vm = F−1
2


s∑

n=1

F2


am,n

1 am,n
4 am,n

7

am,n
2 am,n

5 am,n
8

am,n
3 am,n

6 am,n
9

︸ ︷︷ ︸
Cm,n

⊙F2


xn

1 xn
4 0

xn
2 xn

5 0
0 0 0

︸ ︷︷ ︸
Xn

.

(7)

The desired MVP u⃗ = Ax⃗ is obtained by copying the sub-
matrices Um = Vm(1 : n1, 1 : n2) interpreted as column-
vectors, into u⃗ in the order of m. Note that in practice
the Fourier transformations F2 of Cm,n for all m and n
is performed only once before entering the iterative solution
process, while the Fourier transformation F2 of Xn and the
inverse Fourier transformation F−1

2 for Vm, over all n and
m, respectively, is performed only once per MVP.
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In the most general case where (s > 1, d ≥ 1), the entries
Vm of the MVP of the circulant-extended MoM matrix AC

with a given vector x⃗ become

Vm = F−1
d

{
s∑

n=1

Fd {Cm,n} ⊙ Fd {Xn}

}
, (8)

where Fd denotes the d-dimensional discrete Fourier trans-
form. In this general case, Cm,n becomes a d-dimensional
tensor containing the entries am,n

k arranged consecutively in k
along the d-dimensions of size (2n1−1)× . . .× (2nd−1). X
becomes a d-dimensional tensor of the same size and dimen-
sions in which the only non-zero elements are the original non-
extended unknowns placed at the indices X1 ... n1, ... ,1 ... nd

.
In conclusion, in the general case, the computational com-

plexity of ADM is O(s2T log(T )) rather than O(N logN).
Hence, it is evident that the quadratic scaling with s is a
consequence of permitting a general s× s matrix at the inner
most level. Consequently, it is critical to keep the number of
basis functions, s, on each array element (i.e. unknowns at
the inner-most level) as low as possible without impacting
the solution accuracy. This can be achieved using higher-
order basis functions as will be demonstrated in the following
section.

III. HIGHER-ORDER CONVERGENCE

In this work, ADM has been implemented using the mixed-
potential electric field integral equation (EFIE), as well as the
CFIE for closed surfaces [12]. Curved quadrilaterals (mesh-
cells) with parametrization r⃗(u, v) are used to discretize the
geometry [16], using the HO hierarchical Legendre basis func-
tions from [12] to expand the surface current density as

J⃗(u, v) =
a⃗u

JS(u, v)

Mu∑
m=0

P̃m(u)
Nv∑
n=0

Cuv
mnPn(v)a

u
mn+

a⃗v
JS(u, v)

Mv∑
m=0

P̃m(v)
Nu∑
n=0

Cuv
mnPn(u)a

v
mn, (9)

in which a
{u,v}
mn are the unknown current coefficients in

the {u, v}-direction, a⃗{u,v} = ∂r⃗
∂{u,v} are covariant unitary

vectors, JS is the surface Jacobian and Pn are Legendre
polynomials of order n. Cuv

mn are constants chosen to minimize
the MoM matrix condition number and P̃m are the modified
Legendre polynomials

P̃m(u) =


1− u m = 0

1 + u m = 1

Pm(u)− Pm−2(u) m ≥ 2

. (10)

The value N{u,v} = M{u,v} − 1, and is the maximum
polynomial order used for the current expansion in the {u, v}-
direction, which in this paper is denoted by ρ. The key
benefit of employing polynomial orders ρ > 1 is that the
discretization error behaves as O(hρ), where h is a relative
mesh cell size [13]. That is, increasing the polynomial order ρ
of employed basis functions theoretically yield better accuracy
than increasing the mesh discretization (for the same number
of unknowns). This property is customarily denoted as HO

convergence, and has been verified for a single sphere for
MoM [17] and MLFMM [18]. Note that in practice the poly-
nomial order is adjusted to the electrical size of each mesh
cell, since a general rule for choosing the optimum polynomial
order a priori is not available. In this work we have used a
fixed polynomial order on all mesh cells for the purpose of
showing HO convergence.

A. Array of Spheres

To demonstrate HO convergence in HO-ADM, we consider
a 5 × 5 array of PEC spheres (Fig. 1) with inter-element
distance of L = 16λ and diameter D = 5λ, illuminated by
an x⃗-polarized plane wave, propagating along the z-axis. The
scattered electric far-field intensity is evaluated and compared
to an accurate reference solution using the total relative RMS
error measure (denoted far-field error)

ϵRMS =

√√√√∑Ns

i=1 |Ei,ref −Ei|∑Ns

i=1 |Ei,ref |
, (11)

where Ei,ref is the reference electric far-field, Ei is the
calculated electric far-field vector and Ns is the number of
far-field samples in a regular grid over the 4π far-field sphere.
Because an analytical solution is not readily available, the
reference is a direct solution of the full HO-MoM matrix
with high integration precision and as fine a discretization as
possible within memory limits.

Fig. 1: 5×5 element PEC sphere array. 5λ diameter. 16λ inter-
element distance.

Fig. 2: Relative RMS error ϵRMS as a function of the dis-
cretization density hλ (i.e. the number of unknowns normal-
ized by total surface area in square wavelengths).
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Fig. 3: 10×10 element conical horn array. 2.1λ aperture
diameter. 5.6λ horn height. 2.2λ inter-element distance.

In Fig. 2, the far-field error ϵRMS for the sphere array is
evaluated as a function of the discretization density hλ = N

Ωλ
,

where Ωλ is the total surface area in square wavelengths. For a
discretization density hλ < 20, employing higher polynomial
orders ρ > 1 does not yield a more accurate far-field. However,
as the discretization density rises above hλ > 20, a clear
distinction between the curves for different polynomial orders
can be made. For a discretization density hλ > 100 the far-
field for ρ = 4 is around two orders of magnitude more
accurate than the far-field for ρ = 1. Moreover, for higher
polynomial orders, the increasing slope of the error curves
agree with the theoretical estimate O(hρ). We note that this is
the first time, that HO convergence has been demonstrated for
an array using the ADM with hierarchical higher order basis
functions.

IV. CONICAL HORN ARRAY

As second example, we consider a 22λ × 22λ direct
radiating array (Fig. 3) which consists of 10 × 10 coni-
cal horn antennas fed by circular waveguides excited uni-
formly with the fundamental mode TE11. The radiated
far-field pattern has been calculated using HO-ADM on
a computer with an Intel®Xeon®5218 CPU @ 2.3GHz with
16 cores. A reference solution has been generated using the
smallest mesh length possible on the available system. For
fixed basis function order, ρ, the maximal admissible mesh
length has been varied between 0.15λ and 1.5λ to ensure a
relative total RMS error ϵRMS in the radiated far-field forward
hemisphere that is less than 1% (far-field requirement).

Fig. 4 shows the total computation time (including
initialization and iterative solution) and memory consumption,
for different basis function orders ρ. For each order ρ, the
maximal admissible mesh length has been decreased until
reaching the far-field requirement (or lower). For ρ = 1, a total
of 288,400 mesh cells (≈ 0.15λ) are needed to satisfy the far-
field requirement, which is considerably more than the 54,000
mesh cells (≈ 0.3λ) needed for ρ = 2. The high number of
mesh cells for ρ = 1 results in high ADM initialization time,
primarily due to the increased number of integrals to compute.

The significant reduction in computation time from
220 min. (ρ = 1) to 25 min. (ρ = 2) can be explained

Fig. 4: Total computation time and memory consumption for
HO-ADM required to reach < 1% far-field RMS error.

primarily by the decrease in the number of mesh cells. Notably,
due to meshing constraints, the mesh is more refined for ρ = 2
and ρ = 3, resulting in a two and four times lower RMS error,
respectively, than the solution for ρ = 1 and ρ = 4. The in-
creased accuracy is the primary reason for the relatively small
decrease in total number of unknowns, memory consumption
and computation time from ρ = 2 to ρ = 3. Nevertheless, a
significant fourfold reduction in memory consumption (47GB
to 11GB) and a threefold reduction in computation time
(15 min. to 5 min.) is evident going from ρ = 3 with 22400
mesh cells (≈ 0.5λ) to ρ = 4 with 6,000 mesh cells (≈ 1.0λ).
Note that increasing the polynomial order above four for the
present example requires a coarser mesh than possible for the
given geometrical structure.

The results clearly demonstrate superior performance when
increasing the basis function order. This is most clearly seen
going from ρ = 1 to ρ = 4, where the total computation time
decreases by a factor of about 40 and the memory consumption
decrease by a factor of about 10. Moreover, by increasing the
polynomial order by one (from ρ = 1 to ρ = 2), the total
computation time decreases by a factor of nine, the memory
decreases by a factor of two, even while the RMS error is
halved.

V. CONCLUSION

In this contribution, the Array Decomposition Method and
HO hierarchical basis functions have been combined for the
first time to the authors’ best knowledge. The efficiency of
employing HO basis functions to represent the surface current
density has been shown for both a scattering problem (array
of spheres) and a radiation problem (conical horn array),
achieving HO convergence.

The results show that substantial memory savings and
considerable computational speed-ups are possible by this
combination while at the same time maintaining, or even
improving, the accuracy. In the present test case of a 10× 10
element conical horn array (22λ×22λ), memory consumption
could be reduced by a factor of up to 10 and the simulation
accelerated up to 40 times, when going from first- to fourth-
order basis functions.
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Extended Higher-Order Array Decomposition
Method for Fully Populated or Thinned Array

Antennas and Scatterers with Connected Elements
Magnus Brandt-Møller, Michael Mattes, Olav Breinbjerg, Min Zhou and Erik Jørgensen

Abstract—The Higher-Order Array Decomposition Method
(HO-ADM) is extended to handle fully populated or thinned
finite array antennas and scatterers which can be modeled
as arrays with connected elements lying on a regular lattice.
The Discontinuous Galerkin Method (DGM) is employed to
retain the multi-level block-Toeplitz Method of Moments (MoM)
matrix structure even for connected elements. Moreover, by
zeroing a selected subset of unknowns in the iterative solution
process, thinned arrays can be handled as well. The presented
method yields more than an order of magnitude shorter solution
times for both a 32× 32-element square- and a 793-element
circular-thinned array with a memory consumption comparable
to existing fast methods such as MLFMM.

Index Terms—thinned array antennas, connected array ele-
ments, multi-level block-Toeplitz, discontinuous Galerkin method
of moments, higher-order basis functions

I. INTRODUCTION

ARRAY antennas have become a key component in numer-
ous wireless communication and sensing applications.

Phased array antennas are becoming an imperative part of
next-generation space payloads and user terminals as they offer
in-orbit reconfigurability and electronically steerable beams.

In order to accommodate the stringent performance re-
quirements for space applications, future array antennas will
be electrically and physically large with numerous densely
packed array elements. Their performance is difficult to predict
using traditional computational techniques such as embedded
element patterns, primarily due to the inaccurate modeling
of mutual coupling and edge effects. In addition, the larger
number of needed unknowns challenges traditional full-wave
numerical methods regarding memory consumption and solu-
tion time. This difficulty is further compounded when seeking
an efficient solution for large finite arrays characterized by
a thinned lattice, geometrically interconnected elements, and
different element geometries.

For the conventional full-wave Method of Moments (MoM)
for surface integral equations, the memory consumption and
computational complexity scales as O(N2) and O(N2) −
O(N3), respectively, where N is the number of unknowns.
Although MoM is considered accurate in the sense that it
rigorously takes into account mutual coupling and edge effects,
its computational scaling is prohibitively large for the design
of future electrically large but finite array antennas.

Thanks to...
TBD TBD and TBD TBD are with Anonymous University.
Manuscript received #, 2023; revised #, 2023.

Numerous proposed integral-equation-based methods enable
efficient full-wave analysis of electrically large arrays, in
which the memory scaling and computational complexity can
be reduced to as low as O(N logN) by means of error-
controllable approximations.

One class is the multipole-based methods such as the
Multi-Level Fast Multipole Method (MLFMM) [1], [2] which
is a widely used error-controllable full-wave method for
electrically large structures [3], [4], [5]. Nevertheless, sub-
wavelength array element sizes and spacings pose a challenge
in conventional MLFMM which in addition does not exploit
the typical periodic nature of arrays [6].

A second class of methods is based on MacroBasis Func-
tions (MBFs) such as characteristic basis functions (CBF) [7],
[8], synthetic basis functions (SBF) [9] and accurate subentire-
domain (ASED) [10] basis functions, which are all able to
drastically reduce the number of unknowns in the MoM by
aggregating many elementary basis functions (BFs) into fewer
groups. Nevertheless, the generation and number of MBFs to
include is in general problem specific, making the asymptotic
scaling difficult to predict.

A third class of methods such as the fast Integral Equa-
tion Solver (IES) [11], Integral Equation QR algorithm (IE-
QR) [12] and Adaptive Cross Approximation (ACA) [13] is
based on lossy matrix compression. These methods can be
regarded as algebraic in nature, in that they work by cleverly
grouping and/or by factorization of unknowns with the aim
of improving the compressibility of the system matrix and
accelerating the simulation speed. Similar methods denoted as
fast direct solvers are also based on compression, but focus
strictly on efficient factorization and direct solution of the
linear system [14], [15].

A fourth class of full-wave methods exploits the circular
convolution theorem which allows the use of a Fast Fourier
Transform (FFT) to accelerate the solution process. Examples
are the Adaptive Integral Method (AIM) [16], [17], the pre-
corrected Fast Fourier Transform method (pFFT) [18], the In-
tegral Equation Fast Fourier Transform method (IE-FFT) [19].
In order to utilize the FFT, these methods require a regular
lattice onto which the unknowns are projected.

We note that complementary methods based on the Domain
Decomposition Method also allow for a very memory-efficient
analysis of large finite arrays [20], [21], performing particu-
larly well when combined with the Finite Element Method
(FEM) in case of arrays with complicated stack-ups. On the
other hand, integral-equation-based methods have a distinct
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advantage in inherently satisfying the open boundary radia-
tion condition, eliminating the need for absorbing boundary
conditions.

Although the above-mentioned methods employ physically
and/or analytically-based approximations, most of them are
error controllable, making them well-suited to accelerate the
analysis of general electrically large arrays. Nevertheless,
when array elements are placed on a regular lattice the com-
putation efficiency can be improved without compromising
accuracy by employing the Array Decomposition Method
(ADM) [22]. The ADM exploits the translational invariance
of the 3D free-space Green function in connection with
the regular geometrical lattice (e.g. rectangular, hexagonal
or circular) of the array elements and consecutively ordered
basis functions, allowing an FFT-accelerated matrix-vector
product (MVP) [22], [23] in an iterative solution process. At
the penalty of approximation, the ADM can be extended using
FMM, yielding O(N) memory consumption and a solution
time which can be faster than that of ADM alone, provided that
the number of far-field directions used in the basis function
expansions is less than the number of unknowns on each array
element [24].

Recently, the boundary integral part of ADM has been im-
plemented with higher-order (HO) basis functions and shown
to use significantly less unknowns for a given accuracy [25].
The present work concerns two further extensions to the
full-wave Higher-Order Array Decomposition Method (HO-
ADM) [25] for array antennas or scatterers with arbitrary
perfect electrically conducting (PEC) volumetric antenna el-
ements. In this paper, the HO-ADM is extended to allow for
conduction currents between connected elements, and thus al-
lowing for arrays with a ground-plane or other interconnecting
features. A second extension is that the regular lattice does
not need to be fully populated with identical array elements,
hence permitting thinned arrays. The two extensions presented
in this work allow for significant computational and memory
savings in the HO-ADM when applied to connected and
thinned arrays. This includes such challenging cases as, but
not limited to, circular arrays, arrays with a ground-plane
extending beyond the bounds of the array, and even scatterers
which can be modeled as finite arrays such as a PEC plate, a
cylinder, or other 2D profiles that can be extruded and modeled
as an array.

The paper is organized as follows. Section II reviews the ba-
sic HO-ADM. Section III discusses the necessary extensions to
HO-ADM to be able to analyze connected and thinned arrays.
Section IV presents various numerical examples validating
the capabilities of the extended HO-ADM. Lastly, conclusions
are given in Section V. Time-harmonic variation and phasor
notation is employed throughout the manuscript.

II. HIGHER-ORDER ARRAY DECOMPOSITION METHOD

This section summarizes the HO-ADM [25], in which the
mixed-potential electric field integral equation (EFIE), as well
as the combined field integral equation (CFIE) for closed
surfaces [26] have been employed.

A. Surface Discretization and Basis Functions

Curved quadrilaterals (i.e. mesh-cells), henceforth referred
to as quads, with parametrization r⃗(u, v) are used to discretize
the geometry [27], using the HO-hierarchical Legendre BFs
from [26] to expand the surface current density as

J⃗(u, v) =
e⃗u

JS(u, v)

Mu∑
m=0

Nv∑
n=0

Cuv
mnP̃m(u)Pn(v)α

u
mn+

e⃗v
JS(u, v)

Mv∑
m=0

Nu∑
n=0

Cuv
mnP̃m(v)Pn(u)α

v
mn, (1)

in which {u, v} are curvilinear coordinates, α
{u,v}
mn are the

unknown current coefficients in the {u, v}-direction, e⃗{u,v} =
∂r⃗

∂{u,v} are unitary vectors, JS is the Jacobian determinant, Pn

are Legendre polynomials of order n and Cuv
mn are constants

chosen to minimize the MoM matrix condition number. P̃m

are modified Legendre polynomials defined as

P̃m(u) =


1− u, m = 0
1 + u, m = 1

}
Doublets

Pm(u)− Pm−2(u), m ≥ 2 Singletons
,

(2)

used only in the direction of the current. Herein, doublets
correspond to the usual roof-top continuity-enforcing BFs
having support over two quads. Singletons model local current
density variations and have support only within a single
quad. Other BF-formulations, e.g. Rao-Wilton-Glisson BFs
on triangular cells can be used as well. Nevertheless, by
using quads (instead of triangular cells) only two vectors
(instead of three) are needed to represent the current, which,
combined with the choice of the HO BFs in (1), enables better
accuracy for the same number of unknowns [28]. In addition,
since it is a hierarchical basis, the maximum polynomial order
N{u,v} = M{u,v}−1 for the current expansion in the {u, v}-
direction can be chosen independently for each quad based on
its electrical size.

B. Accelerated Matrix-Vector Product

For an array of antennas or scatterers with identical elements
placed on a d-dimensional regular lattice, the total number of
unknowns N can be formulated as

N = s

d∏
i=1

ni = sT , (3)

where s is the total number of unknowns on each array
element, T is the total number of array elements and ni is
the number of elements in the ith lattice dimension. Due to
the translational invariance of the three-dimensional free-space
Green function, the regular lattice on which array elements
are placed, as well as consecutively ordered BFs, the MoM
matrix A ∈ CN×N becomes a multi-level (a)symmetric
block-Toeplitz matrix of d + 1 levels as depicted in Fig. 1b
for a T = 2 × 3 = 6-element array. That is, A consists
of nd × nd block-Toeplitz (BT) matrices which themselves
consist of nd−1 × nd−1 BT sub-blocks, and so forth for the
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number of array lattice dimensions d. By using the HO-
hierarchical Legendre BFs from (1), the inner-most level
contains asymmetric square matrices a ∈ Cs×s comprising
basis/test function interactions. The unknowns associated with
a given array element at lattice position (a, b) is denoted as
x⃗a,b, where a ∈ {1, . . . , n1} and b ∈ {1, . . . , n2}.

In order to achieve an FFT-accelerated MVP, the sub-blocks
at each level are extended from Toeplitz to circulant [29, sec.
4.7.7] as exemplified in Fig. 1 going from (b)→ (c). The
resulting extended MoM matrix, AC , formally increases the
number of unknowns to Ñ = s

∏d
i=1(2ni − 1), and merely

serves as a mathematical trick since it does not require any
zero-padding of A nor additional computation. This is evident
from Fig. 1c, where the rearrangement of the blocks ak,l
suffices. Herein k ∈ {1, . . . , 2n1−1} and l ∈ {1, . . . , 2n2−1}
enumerate the rearranged blocks at the first (i = 1) and second
(i = 2) block-circulant level, respectively.

To ensure that the MVP with the extended MoM matrix
ACx⃗ C contains entries equal to the original MVP, the un-
known vector x⃗ ∈ CN×1 is extended to x⃗ C ∈ CÑ×1 as illus-
trated in Fig. 1c. Zeroes are placed at the positions pertaining
to the extended blocks, i.e. x⃗k,l = 0 for k > n1 ∧ l > n2.
The MVP ACx⃗ C favorably becomes a discrete circular block
convolution operation which can be accelerated via the FFT.

In conclusion, the computational complexity of the HO-
ADM becomes O(s2T ) in setup time and O(s2T log(T )) for
the MVP. The memory consumption is O(s2T ). Note that
the quadratic scaling with s is a consequence of permitting
a general matrix ak,l at the inner most level. Nevertheless,
by employing the HO-hierarchical BFs, s can be kept low
(compared to ordinary first-order BFs) without impacting the
solution accuracy [25].

III. EXTENDED ARRAY DECOMPOSITION METHOD

In the existing HO-ADM no conduction current is allowed
to flow between elements, effectively excluding arrays with
a ground-plane or other interconnecting features. Another
restriction is that the regular d-dimensional lattice has to be
fully populated with identical array elements. In this section
two contributions to the existing HO-ADM are presented
enabling it to handle electrically connected and thinned arrays.
From this point, HO-ADM will refer to the extended method.

A. Extension to Thinned Arrays

Thinned array antennas are obtained by terminating or
removing elements from uniformly spaced arrays [30]. The
main motivation for thinning array antennas is the achievable
reduction in cost and weight, without compromising desired
performance parameters such as gain, beamwidth, or side lobe
level. Another incentive for thinning can be spatial constraints,
where the outer elements in a regular array need to be removed
to conform to a given rim. In the remainder of this paper, the
term thinning will refer to the removal of elements.

The challenge in retaining an FFT-accelerated MVP, when
array elements are removed, is that the multi-level block-
Toeplitz (MBT) property of the system matrix is lost. The

Fig. 1: Example of (a) T = 2×3 = 6-element generic array, (b) the resulting
multi-level block Toeplitz MoM matrix A with N = sT unknowns, (c) its
full circulant extension AC with Ñ ≈ 2dN unknowns and (d) the thinned
MoM matrix At after removing element four (E4). Colors indicate similar
interaction matrices, while faint colors indicate blocks that do not need to
be computed nor stored. A wavy pattern indicates blocks that have to be
computed if the employed integral operators are not symmetric. In case of
symmetric operators their calculation can be omitted.
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thinned MoM matrix At ∈ CN t×N t
results in the reduced

system

Atx⃗ t = b⃗ t, (4)

where x⃗ t ∈ CN t×1 is the resulting thinned unknown vector,
b⃗ t ∈ CN t×1 is the thinned right-hand side, and N t is the total
number of unknowns after thinning the array. Fig. 1d shows
an example where the removal of array element number four
(E4) and its associated unknowns x⃗2,2 results in the deletion
of both a block-row and -column which in turn destroys the
MBT structure.

Instead of removing elements from A, one remedy to
maintain the MBT structure is to keep A as is, but employ
zeroing of the unknown vector and the MVP result. Herein
the full length of the unknown and right-hand side vectors
is retained, while the unknowns and MVP entries associated
with removed elements are forced to zero. Mathematically, the
MVP for the thinned system can be formulated as

Atx⃗ t = Za,b{AZa,b{x⃗i}}, (5)

where Za,b is a zeroing function placing zeros at those
positions (a, b) in the vector which pertains to the removed
array element(s) and x⃗i ∈ CN×1 is the ith iteration solution
vector guess. Because Za,b{x⃗i} is of full length N , it can be
multiplied on the full MoM matrix A possessing the MBT
property, effectively preserving the FFT-acceleration.

The zeroing of unknowns pertaining to e.g. element number
four (E4) via Z2,2{x⃗i}, being equivalent to x⃗2,2 = 0, effec-
tively removes the influence of the blocks in column number
four as illustrated with the vertical red dashed rectangle in
Fig. 1d. From an electromagnetic perspective, zeroing basis
function coefficients Z{x⃗i} in each iteration can be interpreted
as enforcing zero current flow on removed element(s). Remark,
however, that this does not eliminate the corresponding block-
row number four, which represents the coupling from all other
elements to the removed element. Therefore, to also remove
the influence of the row, the MVP result AZ2,2{x⃗i} should
be zeroed as well, as indicated with the horizontal red dashed
rectangle in Fig. 1d.

In addition, the right-hand side vector b⃗ must be zeroed
accordingly in order for the iterative solver to calculate the
correct residual vectors r⃗i, that is

r⃗i = Za,b{b⃗} − Za,b{AZa,b{x⃗i}}. (6)

Zeroing the resulting MVP, i.e. Z{AZ{x⃗i}}, can be under-
stood as not letting the coupling field from all other elements
induce any current on the removed element(s). In short, by
appropriately zeroing, the iterative solver will converge to the
same solution as if the ordinary MVP Atx⃗ t was applied for
the truncated system.

B. Extension to Electrically Connected Arrays

The MBT property of A is lost in the case of electrically
connected array elements. This is because the doublet basis
function coefficients α0n, α1n on connected edges have to
be associated with either one or the other array element.
In order to overcome this limitation, the Discontinuous

Fig. 2: Two patch elements at the corner of a larger ground-plane-connected
array. Half-doublet BFs are introduced on either side of the boundaries be-
tween adjacent elements. Dummy unknowns, which are appropriately placed
half-doublets, are added on external edges to retain the MoM matrix MBT
property (see Section III-B2).

Galerkin Method (DGM) for surface integral equations is
employed [31].

1) Discontinuous Galerkin Method: The DGM is com-
monly recognized for its ability to handle non-conformal
meshes of complex targets comprising mesh elements of
a wide range of electrical sizes, resulting in a significant
reduction in memory consumption and solution time [32],
[33], [34]. In the present contribution yet another application
of the DGM is presented to retain the MBT MoM matrix
A. Quite recently, the DGM has been applied to finite array
analysis [10], but not in the context of retaining the MBT
property of the MoM matrix to facilitate the use of an FFT-
accelerated MVP.

The essence of DGM is that current continuity is weakly
enforced via an extra surface integral penalty term albeit at
the cost of an increased condition number of A [31]. For this
reason, it was proposed in [31] to stabilize the resulting DGM
MoM matrix and provide practical iterative convergence with
an extra boundary interior penalty stabilization function IIP(β)

IIP(β) =
β

k2

∫
Cpq

[n̂p· f⃗mt (⃗r)][n̂q· f⃗nb (⃗r)]d⃗r, (7)

in which β = 1
10h is a scalar depending on the average

electrical mesh size h, k is the wavenumber, f⃗mt is the mth

test function, f⃗nb is the nth basis function and r⃗ is a position
vector along the common edge Cpq between quads p and q
with in-plane outward normal unit vectors denoted as n̂p and
n̂q , respectively (see Fig. 2).

In the HO-ADM, exclusion of this interior boundary penalty
term is paramount because including it destroys the MBT
property of A. This is due to the opposite signs of the two
normal vectors n̂{p,q} when evaluated along the common edge
Cpq . Note that IIP is merely responsible for stabilization and
that its exclusion is feasible provided proper preconditioning
is employed [35], [36], [33].

2) Application of DGM in HO-ADM: With the DGM at
hand, Fig. 2 illustrates how the above outlined approach is
only applied at the electrically connected boundaries between
array elements. More specifically, the half-doublet BFs are
placed only at edges associated with two quads which lie on
two different array elements. As a consequence, twice the
number of doublet unknown coefficients are introduced, but
only at those edges which connect different array elements.
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Fig. 3: Ground-plane of the array from Fig. 2 using, for illustration, T =
2× 2 = 4 elements with (a) DGM applied at differently oriented connected
edges resulting in dissimilar MoM matrix self-interaction blocks and (b) with
dummy BFs (half-doublets) appropriately placed at external edges in order
to make self-interaction blocks equal. In this way, the full MoM matrix A
retains its multi-level block Toeplitz property.

In the case of the patch array in Fig. 2, this means that DGM
only has to be applied at the ground-plane edges. Note that
this allows for normal divergence-conforming and inherently
continuity-enforcing BFs between all other quads inside the
array-elements.

Hence, by the use of half-doublets, the basis function
coefficients can be distributed evenly between array element
matrices ak,l in A, while the DGM maintains current continu-
ity. The MoM matrix is, however, not yet fully BT because the
array elements do not possess the same amount nor the same
enumeration of BFs. Since DGM only needs to be applied at
edges which connect different array elements, we focus now
only on the ground-plane of the patch array of Fig. 2, which is
illustrated in Fig. 3 for clarity reasons. Herein, the DGM has
been used to place half-doublets on each of the connecting
edges on the ground-plane between the four array elements.
However, because these half-doublets are placed at differently
oriented edges (indicated with colors), the resulting MoM self-
interaction matrix blocks are no longer equal, despite having
many basis function self-interactions in common (indicated in
gray). Consequently, retaining the MBT property of A is not
possible with the DGM alone.

3) Dummy Unknowns: To this end, a number of dummy
BFs need to be added to the ground-plane on those array ele-
ments which are placed along the edges of the array. Here, one
solution is to introduce half-doublets on all external edges, i.e.
edges which are only associated with one quad, as illustrated

in Fig. 3b. By doing so, self-interaction blocks for all array
elements become equal, and the MBT property of A can be
retained. Note that unlike the formally added unknowns Ñ due
to the circulant extension, the additional dummy unknowns
involve some overhead since they have to be computed and
stored. Therefore, in the HO-ADM only strictly necessary
external edges are identified on which dummy unknowns have
to be placed.

Although the addition of dummy unknowns together with
the DGM retains the MBT MoM matrix, the additional un-
knowns placed at external edges alter the Krylov subspace
and subsequently the obtainable solution. It is therefore of
paramount importance to exclude dummy basis function co-
efficients from the iterative solver. Fortunately, the technique
of Section III-A can also be employed here to effectively hide
dummy unknowns from the iterative solver’s perspective, such
that the underlying Krylov subspace remains unchanged. As
such, dummy unknowns are never solved for and merely serve
to preserve the MBT property of A for retaining a fast MVP.

After employing the DGM and adding required dummy
unknowns, the total number of unknowns N† can be approx-
imated as

N† = [s+ κ(s)]T, (8)

where κ(s) ∈ {0, . . . , s} is the average number of BFs
connecting two array elements. For example, if half of the BFs
on an array element is electrically connected to a neighboring
element

(
i.e. κ(s)

s = 0.5
)

, we would need 50 % more un-
knowns. Nevertheless, for practical antenna arrays the amount
of connected edges and thus doublet BFs between array
elements is considerably smaller than the number of BFs on
each array element (i.e. κ(s) ≪ s), hence N† ≈ N .

In summary, by employing half-doublets only at connected
boundaries between array elements (i.e. only on the ground-
plane for the patch array of Fig. 2), using the DGM to enforce
current continuity and by introducing dummy unknowns which
are hidden from the iterative solver, electrical conduction
currents are allowed to flow between array elements while
retaining the MBT property of the MoM matrix, permitting
an FFT-accelerated MVP.

C. Required Preconditioning Strategy

In this section, a necessary preconditioning strategy is
presented in order to arrive at an effective solver for the HO-
ADM in the case of connected arrays. A left-preconditioned
linear system of equations is assumed, with a relative error ϵ
defined as

ϵ =

∥∥∥P -1
[
b⃗−Ax⃗i

]∥∥∥
2∥∥∥P -1b⃗

∥∥∥
2

, (9)

in which P represents a block-diagonal (BD) preconditioning
matrix with (PC) or without (PNC) coupling terms from nearby
array elements. Note that P is never formed explicitly nor
applied to A directly.

Due to the inherent MBT structure of A, a constant-memory
block-diagonal preconditioner has been shown to be effective
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Fig. 4: Unique interaction groups required to build the constant memory NF-
coupling preconditioner for the example of a 6× 6 element (a) unconnected
array (b) connected array and (c) connected and thinned array. DGM half-
doublet BFs are placed at connected edges marked in blue. Faint colors
indicate groups that do not need to be computed nor stored.

for the Array Decomposition Method [22]. Herein, an LU-
factorization of the interaction matrix of a single array element
is used in a BD preconditioner, which will be referred to as
PNC. However, in the case of connected arrays in the HO-
ADM, a preconditioner not including coupling with nearby
array elements no longer suffices. This is mainly due to the
now closely coupled half-doublet BFs but also due to the
excluded interior stabilization term IIP.

1) Constant-Memory NF-Coupling Preconditioner: To
overcome the bad iterative convergence when array elements
become electrically connected, a NF-coupling BD precondi-
tioner, PC, is needed. Nevertheless, an inherent challenge with
BD preconditioners including coupling is that each block along
the main diagonal has to be stored. For the HO-ADM, doing
so would mean that the preconditioner memory consumption
would become proportional to the number of array elements T
and even comparable to the storage of the unique interaction
matrices ak,l. However, in case of regular arrays a unique
set of basis function preconditioner groups can be identified
as depicted in Fig. 4 for the example of an unconnected,
connected and simultaneously thinned and connected 6 × 6
element array.

In the simple case where elements are not electrically
connected, only one interaction group, comprising the self-
interactions of a single array element, needs to be computed
and stored as illustrated in Fig. 4a. This corresponds to the
previously discussed no-coupling preconditioner PNC. By real-
izing that redundant groups exist for connected arrays as well,
we have in practice only nine unique preconditioner groups
[I, T, D, L, R, TL, TR, DL, DR] as illustrated in Fig. 4b, in
which letters {(I)nner, (T)op, (D)own, (L)eft, (R)ight} are used

Fig. 5: Performance of the constant memory NF-coupling (CNF) precon-
ditioner compared to the common block-diagonal preconditioner without
coupling; both applied to the case of a normal-incident plane wave on
ground-planes (PEC square plates) of different sizes which are constructed
by electrically connecting (1λ)2 quadrilateral mesh cells using HO-ADM.
The wavelength is fixed to 1.0m and the size is varied. For reference, the
MLFMM result is presented only for the computationally most demanding
case of the (400λ)2 plate.

to distinguish unique interaction groups, and simultaneously
indicate the positions of external edges for a given group. If
we, in addition, allow array thinning, we can still identify a
finite but slightly larger set of 16 unique preconditioner groups
as seen in Fig. 4c. Consequently, it is possible to construct
a constant-memory NF-coupling (CNF) preconditioner PC
for simultaneously connected and thinned arrays, by only
computing and storing at most 16 unique interaction matrices.

The CNF preconditioner PC is constructed by LU-
factorization of at most 16 unique interaction matrices, where-
after they can be applied in parallel on the complete array
by simple forward/backward substitutions on the associated
right-hand side (b⃗) entries. Remark that building the required
preconditioner groups (including coupling) requires no re-
computation since all interaction information is already con-
tained in the storage of ak,l.

In Fig. 5, the relative residual error versus the number of
iterations is plotted, for comparison purposes, for the simple
case of plane-wave scattering from a ground-plane (i.e. square
PEC plate) of various electrical sizes modeled by connecting
many smaller (1λ)2-sized plates, where λ is the wavelength.
For ground-plane sizes up to around (100λ)2, the no-coupling
preconditioner PNC converges similarly as the system with-
out preconditioning. For a (400λ)2-ground-plane comprising
6.4 million (M) unknowns, the no-coupling preconditioner
converges to a residual error of 10−3 after 1448 iterations,
whereas no preconditioning stagnates at over 3200 iterations.
Interestingly, it is noted that for all considered ground-plane
sizes ranging from (10λ)2 to (400λ)2, the residual error
starts out being significantly higher with the no-coupling
preconditioner compared to not applying a preconditioner at
all. Only for small ground-planes, e.g. (10λ)2 and (20λ)2, is
the final number of iterations of the no-coupling preconditioner
better than not applying any preconditioning. This impeded
effectiveness of PNC makes sense if we perceive the connected
array using DGM as the limiting case of unconnected array
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(a)

(b)

Fig. 6: Normalized scattered far-field ϕ = 180◦-cut for an obliquely incident
(θi = 30◦, ϕi = 0◦) plane wave on a (40λ)2-sized PEC square plate
comparing the HO-ADM and HO-MoM. The blue marking is a view of the
range θ = [20◦, 40◦] with the same y-axis dynamic-range as the full plot.

elements moving closer to each other, since PNC effectively
assumes an uncoupled array problem.

Instead, by applying the NF-coupling preconditioner PC,
a residual error of 10−3 is reached after 17 iterations for a
(10λ)2-ground-plane compared to 185 iterations for the simple
PNC preconditioner. The efficacy is even clearer for the larger
(400λ)2-ground-plane for which the number of iterations
reduces from 1448 to 41 iterations by employing PC. For
reference, comparison with a HO-MLFMM implementation
which converges after 51 iterations for the (400λ)2-ground-
plane establishes the efficacy of PC. Here it should be stressed
that the HO-MLFMM implementation also employs a coupling
preconditioner and that HO-MLFMM uses flexible GMRES
including inner and outer iterations. Therefore, to make a
fair comparison with HO-MLFMM, only outer iterations have
been allowed.

IV. VALIDATION EXAMPLES

Numerical experiments are performed to demonstrate the
validity and efficiency of the presented HO-ADM. Results
have been generated on a computer with an Intel® Core® i7-
9850H CPU @ 2.6GHz with 6 cores and 32GB of RAM,
unless otherwise stated. The generalized minimal residual
(GMRES) iterative solver is employed with Krylov subspace
maximum dimension of 300 and relative residual error toler-
ance of 10−3. Comparisons are made with the full-wave solver
in ESTEAM [37] which is based on a state-of-the-art HO-
MoM/MLFMM implementation [26], [38]. In the following,
total solution time includes the generation of BFs, the calcu-

Fig. 7: Comparing HO-ADM with HO-MLFMM/HO-MoM in terms of (a)
total memory consumption and (b) total solution time for the case of obliquely-
incident (θi = 30◦) plane-wave scattering of various electrically large PEC
plates (up to an area of (620λ)2 corresponding to ca. 15 million unknowns).
– The wavelength is fixed to 1.0m and the size is varied. Markers do not
reflect number of data points.

lation of and the block-FFT across unique interaction blocks,
the preconditioner generation, and the iterative solution time.
Total memory consumption refers to the storage of required
matrices, the Krylov subspace, as well as the preconditioner.
An Equivalent Relative Error (ERE) is used to compare HO-
ADM with HO-MLFMM

ϵERE =

√√√√∑Ns

i=1 |Ei,ADM −Ei,MoM/MLFMM|2∑Ns

i=1 |Ei,MoM/MLFMM|2
, (10)

where EADM and EMoM/MLFMM are the electric far-field
vectors for HO-ADM and HO-MoM/MLFMM, respectively.
Ns= 5403 is the number of far-field samples used on a regular
θ-ϕ-grid over the 4π far-field sphere for the examples of
Section IV.

A. Plane Wave Incidence on Square Plate

As a first validation example, we continue the example of
the ground-plane of Fig. 5 and consider the problem of a plane
wave obliquely incident (θi = 30◦, ϕi = 0◦) on a square
(40λ)2-sized PEC plate, as depicted in Fig. 6a. The scattered
far-field is plotted in Fig. 6b for a ϕ = 180◦-cut and is seen
to coincide with the results of the HO-MoM within the full
dynamic range (50 dB) with an equivalent relative error of
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TABLE I: Total solution time and memory consumption samples from Fig. 7
for ground-planes of various sizes, comparing HO-MLFMM and HO-ADM
on an Intel® Core® i7-9850H CPU @ 2.6GHz with 6 cores. Note that
separating s and T (N = sT ) is only valid for HO-ADM.

Ground-
plane Size

HO-MLFMM HO-ADM

Time Mem. N Iter. Time Mem. s T Iter.

1: (10λ)2 1.5 s 25 MB 3120 11 0.1 s 4.4 MB 40 100 18
2: (80λ)2 118 s 1.4 GB 204,160 17 5.7 s 0.3 GB 40 6400 29
3: (320λ)2 46 m 26 GB 3,274,240 28 98 s 4.9 GB 40 102400 40
4: (620λ)2 - 90 GB 12,300,800 - 6 m 18 GB 40 384400 53

0.01%. In the HO-ADM, the plate is modeled as many (1λ)2-
sized connected elements (see Fig. 6a) and by applying the
DGM with dummy unknowns as described in Section III-B.

In Fig. 7 the total solution time and memory consumption
is plotted, including theoretical asymptotic scaling, comparing
HO-MoM/MLFMM and the HO-ADM for increasingly larger
plates. Note that the wavelength is fixed to 1.0m and the size is
varied. Selected samples (marked with numbers in parenthesis
in Fig. 7) have been tabulated in Table I. Herein it is evident
that HO-ADM is more than an order of magnitude faster than
the HO-MLFMM in terms of total solution time in the whole
span from N =4, 000 to N =15M unknowns. For PEC plates
smaller than (80λ)2 corresponding to N =256, 000 unknowns,
the total solution time of the HO-ADM does not follow the
theoretical asymptotic scaling because it is dominated by
the overhead associated with the special DGM and dummy
unknowns handling.

For a larger (320λ)2 PEC plate, the HO-ADM requires circa
N = 4M unknowns and uses 98 s with 5GB of total memory
consumption whereas MLFMM requires around N = 3.2M
unknowns but uses 46min with a memory consumption of
26GB. For the largest (620λ)2 PEC plate (N ≈ 15M), HO-
ADM uses a total simulation time of around 6min, and a
memory consumption of 18GB, whereas HO-MLFMM would
require 90GB and could not be run on the computer at hand.

B. Phased Patch Antenna Array
As a second example, we consider a 32 × 32-element

dual-frequency right-hand circularly polarized (RHCP) high-
gain antenna array based on the design from [39] with 1024
independent wire excitations, which is illustrated in Fig. 8a
including the employed simulation mesh. The array is meshed
with a total of 122,880 quadrilaterals comprising N = 975,000
unknowns in the HO-MLFMM, whereas N ≈ 1M unknowns
are needed in the HO-ADM due to the DGM and dummy
unknowns as described in Section III-B.

The radiated far-field pattern in Fig. 9a has been computed at
8.4GHz, and the peak directivity for both HO-ADM and HO-
MLFMM is 38.4 dBi (which is close to the reported calculated
directivity of 38.5 dBi [39] considering that not all design
parameters are known). In Fig. 9a both the co- and cross-
polarization patterns are seen to coincide comparing the HO-
ADM with HO-MLFMM, with an equivalent relative error of
0.03% and 0.05% for co-pol and cx-pol, respectively.

Table II shows a comparison of solution time and memory
consumption between the HO-ADM and ESTEAM. For HO-

(a)

(b)

Fig. 8: (a) 32×32-element dual-frequency right-hand circularly polarized all-
metal high-gain antenna array, including employed meshing of the element
cell for the reported results. – White lines indicate edges of the mesh, blue
signify wire-quads, dark gray quads designate the ground-plane and orange
illustrate quads on the radiating elements. (b) Thinned 793-element all-metal
array conforming to a circular rim.

TABLE II: Total solution time and memory consumption for the 32×32 array
in Fig. 8a and the corresponding circular-thinned array in Fig. 8b, comparing
HO-MLFMM and HO-ADM on an Intel® Core® i9-10980XE CPU @
3.0GHz with 18 cores. Results in parentheses are for the thinned array.

Method
Total

Simulation Time
Memory

Consumption
Number of
Iterations

Time per
Iteration

HO-MoM N/A 3540 GB N/A N/A
HO-MLFMM 1 h 2 min

(57 min)
25.1 GB

(22.5 GB)
540

(567)
3.9 s

(3.8 s)
HO-ADM 6 min 18 s

(6 min 18 s)
28.2 GB

(28.2 GB)
481

(506)
0.4 s

(0.38 s)

MLFMM the solution time is around 1 hour with a memory
consumption of only 25.1GB. At the penalty of slightly
increased memory consumption (28.2GB) using the extended
HO-ADM, the solution time can be reduced by a factor of
10 to around 6 min. Both HO-MLFMM and HO-ADM use
around half of the total solution time to setup matrices and
the other half to solve the system, and both use approximately
the same order of iterations. The ten-fold reduction in solution
time for HO-ADM is observed both in terms of setup time and
time per iteration.

Whereas a speed-up by a factor of 30 is possible in the
case of an electrically large PEC plate constructed by simple
flat quads, a speed-up by a factor of only 10 is achievable
for the 32× 32 array. The main reason is the quadratic com-
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Fig. 9: Far-field directivity pattern (ϕ = 0◦-cut) at 8.4GHz comparing the
HO-ADM to the HO-MLFMM for (a) the antenna of Fig. 8a (b) the thinned
array of Fig. 8b. Co-polarization is RHCP whereas the cross-polarization is
LHCP. 3.0dB-beamwidths are marked with dark-gray vertical lines.

putational complexity scaling in s (number of basis functions
per array element), which impacts both the memory O(s2T )
and computational complexity O(s2T log T ) for HO-ADM.
Here it should be noted that the asymptotic total computational
complexity and memory scaling of MLFMM is O(sT log sT ).
For a fixed array element discretization, s can be considered
constant, hence the memory consumption of HO-ADM will
become smaller than that of HO-MLFMM for larger arrays.
While the computational complexity remains the same be-
tween HO-ADM and HO-MLFMM, they differ significantly
in their respective computational complexity constants. The
break-even value of s is strongly problem-dependent; that is,
it varies significantly with the complexity of the individual
elements and how many array elements are considered. From
our investigations, we found that the asymptotic break-even
point, s∞ for T → ∞ (infinite number of array elements) is
on average in the order of 4000 but can vary from 1000 to
10000 and even higher.

C. Circular Rim Patch Antenna Array

The third example takes outset in the same 32×32-element
array but assuming it needs to conform to a circular rim.

To this end, the antenna array needs to be thinned which
is achieved in HO-ADM as described in Section III-A. The
resulting 793-element array is depicted in Fig. 8b, and is
meshed with a total of 92,323 quadrilaterals comprising
N = 755,370 unknowns in the HO-MLFMM, whereas 18,312
(2.4%) additional unknowns are needed in the HO-ADM due
to the DGM and dummy unknowns.

The radiated far-field pattern has been computed at 8.4GHz
and is shown in Fig. 9b with an equivalent relative error
of 0.05% and 0.07% for co-pol and cx-pol, respectively.
As anticipated for a smaller aperture, the peak-directivity is
1.1 dB smaller at 37.3 dB, and the first side-lobe level at
19.9 dB is close to a uniformly excited circular aperture. The
3 dB beamwidth is only 0.2◦ larger for the thinned array
compared to the full 32×32 array.

Solution time and memory consumption in the case of the
circular-thinned antenna array can be found in Table II en-
closed in parentheses. Whereas the HO-MLFMM uses 57min,
the total solution time for the HO-ADM in case of the thinned

array is unaltered at 6min and 18 s. Firstly, this is because
all matrix blocks ak,l need to be computed and stored in
the HO-ADM regardless of the number of thinned elements
in the array. Secondly, for this particular case, the slightly
faster MVP compensates for the additional iterations which are
needed due to the employed preconditioner being less effective
for the circular-thinned array.

V. CONCLUSION

We presented two extensions to the Higher-Order Array
Decomposition Method enabling it to handle thinned and
connected arrays of antennas or scatterers. The Discontinuous
Galerkin Method (DGM) for surface integral equations has
been employed together with appropriately placed dummy
unknowns to retain the FFT-accelerated matrix-vector product
even for connected arrays.

The presented method significantly reduces the solution
time by more than an order of magnitude for both a 32× 32-
element square array and a 793-element circular-thinned array.
This improvement in speed is achieved without approxima-
tions and without significantly increasing memory consump-
tion compared to existing fast methods like the MLFMM.

We note that future work includes an extension to the
presented method enabling the simulation of non-identical
array elements, by exploiting the same technique as described
in Section III-A.
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Abstract—The performance of the Array Decomposition
Method for finite regular antenna arrays with arbitrary identical
elements using higher order basis functions is investigated.
We demonstrate how using higher-order basis functions, which
drastically reduce the number of basis functions per array
element, results in significantly reduced simulation time for a
10× 10 (22λ× 22λ) circular horn array.

Index Terms—antennas, finite array, higher-order basis func-
tions, block Toeplitz solver

I. INTRODUCTION

TRADITIONALLY, antenna arrays have been employed in
radar applications, radio astronomy and as feeds for re-

flector based systems. For such applications, traditional design
approaches based on embedded element patterns and array
factors or variants thereof have sufficed. With the on-going
move from large spacecrafts in the geostationary orbit (GEO)
to smaller spacecrafts in low earth orbits (LEO), as well
as an increasing demand for flexible in-orbit configurations,
direct radiating arrays (DRA) are employed more frequently
for space missions. DRA commonly comprise densely packed
elements which in turn demands more accurate modelling
of edge and mutual coupling effects. In addition, stringent
performance requirements in space substantiates the necessity
of rigorous full-wave numerical methods.

Conventional full-wave methods, e.g. the Method of Mo-
ments (MoM), suffer from excessive memory requirement
and computational complexity, O(N2) and O(N2)−O(N3)
respectively, where N is the number of unknowns.

Several iterative methods have been proposed for the
solution of electrically large arrays, in which the memory
and computational requirement is O(N logN). Examples
include the Multi-Level Fast Multipole Method (MLFMM)
[1], the Adaptive Integral Method (AIM) [2] and the pre-
corrected fast Fourier transform (pFFT) [3]. While these
methods accelerate the analysis of general arrays, it has
been shown that exploiting the geometry of regular antenna
arrays significantly reduce both memory requirement and
computation time [4].

The present work concerns the MoM solution of electrically
large antennas arrays with arbitrarily shaped, regularly spaced,
identical and perfectly electrically conducting identically ori-
ented elements, a common configuration for modern antenna
arrays. The translational invariance of the associated Greens

function, together with the regular geometrical structure of
the array results in a block-Toeplitz matrix [5] which allows
for a Fast Fourier Transform (FFT)-accelerated matrix-vector
product (MVP) [4], [6] in the iterative solution, using the
Array Decomposition Method (ADM).

ADM scales as the square of the number of basis functions
per array element [6]. It is therefore paramount to keep the
number of basis functions as low as possible for a fixed
solution accuracy. Several approaches to reduce the sensitivity
of ADM to increasing number of basis functions have been
proposed [4], [7]; however, they are based on approximations,
which may impact solution accuracy.

We demonstrate how the number of basis functions per
array element can be reduced using higher-order (HO) ba-
sis functions [8]. Consequently, used in combination with
ADM, a significant reduction in computation time can be
achieved. To demonstrate this, the HO-ADM is applied to
a 10× 10 (22λ× 22λ) circular horn array, resulting in much
lower computation times compared to the ADM using first-
order basis functions, without the need for approximations.

II. THE ARRAY DECOMPOSITION METHOD

This section is a distilled version of ADM [4], for the
purpose of understanding ADM’s quadratic scaling in number
of basis functions per array element. We take outset in an
arbitrary p×q element planar array, and write the total number
of unknowns as N = ST , where S is the total number of
unknowns per array element, and T = p×q is the total number
of array elements.

Since the MVP with a (circulantly extended) block-Toeplitz
matrix is equivalent to a convolution operation on the blocks,
the MVP can be accelerated by the FFT. However, the individ-
ual matrix blocks of size S×S do not, in general, possess any
special symmetry, and can therefore not be accelerated by the
FFT. Thus, ADM scales computationally as O(S2T log(T )).

Moreover, in order to perform the MVP, ADM needs to
store (2p − 1) × (2q − 1) blocks of size S × S, resulting
in an asymptotic memory scaling of O(S2T ). With this
asymptotic scaling, it is critical to keep S as low as possible
without impacting solution accuracy. This can be achieved
using higher-order basis functions. In this work, an ADM
implementation using the higher-order hierarchical Legendre
basis functions from [8] is used.



Fig. 1: 10×10 (22λ× 22λ) element circular horn array.

III. RESULTS

We consider a direct radiating 10 × 10 (22λ × 22λ) array
(Fig. 1) which consists of circular horn antennas fed by
circular waveguides excited with the fundamental TE11 mode.
The radiated far-field patterns have been calculated using HO-
ADM on a computational machine with an Intel®Xeon®5218
CPU @ 2.3GHz with 16 cores. A reference solution has
been generated using the smallest mesh length possible on the
available system. For fixed basis function order p, the maximal
admissible mesh length has been varied between 0.15λ and
1.5λ to ensure an RMS error in the radiated far-field forward
hemisphere that is less than 1% (far-field requirement).

Fig. 2 (a) shows the total computation time (including ini-
tialisation) and memory usage (b), for different fixed BF orders
p. For each order p, the maximal admissible mesh length has
been decreased until reaching the far-field requirement (or
lower). For p = 1, a total of 288,400 mesh cells (≈ 0.15λ)
are needed to converge to the far-field requirement, which is
considerably more than the 54,000 mesh cells (≈ 0.3λ) needed
for p = 2. The high number of mesh cells for p = 1 results in
high ADM initialisation time, primarily due to the increased
number of integrals to compute.

The significant difference in computation time from
220 min. (p = 1) to 25 min. (p = 2) can be explained
primarily by the decrease in the number of mesh cells. Notably,
due to meshing constraints, the mesh is more refined for p = 2
and p = 3, resulting in a two and four times lower RMS error,
respectively, than the solution for p = 1 and p = 4. The
increased accuracy is the primary reason for the relatively
small decrease in total number of unknowns, memory and
computation time from p = 2 to p = 3.

Overall, the results clearly demonstrate superior perfor-
mance when increasing the basis function order. This is most
clearly seen in the transition from p = 1 and p = 2, where the
total computation time decreases by a factor of 9, the memory
decreases by a factor of two, even while the RMS error is
halved.

IV. CONCLUSION

A reduction in required memory and computation time
for simulation of regular arrays has been demonstrated. This

Fig. 2: Total simulation time (a) and memory usage (b) for
HO-ADM required to reach < 1% far-field RMS error.

is achieved by means of the Array Decomposition Method
used in conjunction with higher order basis functions. It is,
to the best of the authors’ knowledge, the first time such
a combination has been implemented. The results show that
using this approach, the memory and computation time savings
in the order of 9 and 44 times, respectively, can be achieved
compared to traditional first-order basis function implementa-
tions.
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Abstract—The Higher-Order Array Decomposition Method
(HO-ADM) is extended to handle regular array antennas with
interconnected elements. The Discontinuous Galerkin Method
(DGM) is used to retain the multi-level block-Toeplitz Method of
Moments (MoM) matrix structure, even for connected elements.
The presented method yields more than an order of magnitude
reduced solution time for a 8× 8 real-world antenna array and
similar memory consumption compared to existing fast methods.

I. INTRODUCTION

Future array antennas will include a huge number of densely
packed elements, resulting in electrically massive structures
with strong edge effects and mutual coupling occurring. To
accurately take into account these effects for electrically large
arrays, traditional methods such as the embedded element
pattern approach no longer suffice.

When analyzing arrays by solving surface integral equations
(SIE) using the full-wave Method of Moments (MoM), all
mutual coupling and edge effects are taken into account. This
is nevertheless at the expense of a computational complex-
ity and memory consumption which scales as O(N2) and
O(N2) − O(N3), respectively, where N is the number of
unknowns. By means of error-controllable approximations,
various effective full-wave analysis techniques have been
proposed, in which memory consumption and computational
complexity can be reduced to as low as O(N logN).

Widely used examples include the Multi-Level Fast Mul-
tipole Method (MLFMM) [1], the Adaptive Integral Method
(AIM) [2], and the pre-corrected fast Fourier transform (pFFT)
[3], the latter two require projection of BFs on a regular grid.
For Macro-Basis Function (MBF) based methods [4], [5], the
generation and number of MBFs to include is problem specific
and the error cannot be controlled a priori.

When array elements are placed on a regular lattice the
computation efficiency can be improved without compromis-
ing accuracy by employing the Array Decomposition Method
(ADM) [6]. Recently, the boundary integral part of ADM has
been implemented with higher-order (HO) basis functions and
shown to use significantly less unknowns for a given accuracy
[7]. Nevertheless, a restriction in the HO-ADM has been that
no conduction current was allowed between elements, i.e. that
elements could not be connected, effectively excluding arrays
with a ground-plane or other interconnecting features. In this
paper the existing HO-ADM has been extended, enabling it to
handle electrically connected arrays.

II. HO-ADM WITH CONNECTED ELEMENTS

The HO-ADM makes use of consecutively ordered HO basis
functions (BFs), the regular arrangement of array elements,
as well as the translational invariance of the 3D free-space
Green function, to enable an FFT-accelerated matrix-vector
product (MVP) used in the iterative solution procedure. This
acceleration is only possible due to the resulting multi-level
block-Toeplitz (MBT) MoM matrix A. In case of electrically
connected array elements this Toeplitz property is lost because
the BF coefficients on connecting edges have to be associated
with either one or the other array element. In the present
contribution, the Discontinous Galerkin Method (DGM) [8]
for surface integral equations is employed to keep the MBT
property of A. Consequently, the MVP can be FFT-accelerated
in the case of connected array elements.

More specifically, the DGM is employed to split the roof-top
BFs into half roof-tops at edges associated with two mesh-
cells which belong to two different array elements. As a
consequence, twice the number of BF coefficients are needed
at connecting edges, but they can now be distributed evenly
between array element interaction-matrix blocks in A. To
make A fully block-Toeplitz, however, a number of dummy
BF need to be added to the array unit cell. These are half roof-
tops but are placed on all external edges, i.e. edges which are
only associated with a single mesh-cell. By doing so, self-
interaction blocks for all array elements become equal, which
in turn means that the MBT property of A is retained.

It should be noted that placing additional dummy unknowns
at external edges changes the Krylov subspace and therefore
also the obtained solution. However, by hiding the dummy BFs
from the iterative solver, which is done by zeroing appropri-
ate entries in the residual vector calculation, the solution is
unchanged. As such, dummy unknowns are never solved for
and merely serve to preserve the MBT property of A in order
to accelerate the MVP using the FFT.

In summary, by splitting roof-tops into half roof-tops using
the DGM to enforce current continuity and by introducing
dummy unknowns, which are hidden from the iterative solver,
electrical conduction currents are now allowed to flow between
array elements in the extended HO-ADM.

III. APPLICATION EXAMPLE

As a validation case, we consider an 8 × 8-element dual-
frequency right-hand circularly polarized (RHCP) high-gain
antenna sub-array based on the design in [9] (Fig. 1) with



Fig. 1. 8× 8-element (area of 28.5λ2) dual-frequency right-hand circularly
polarized (RHCP) high-gain antenna sub-array from [9], with radiation pattern
coordinate system.

Fig. 2. Normalized far-field directivity pattern (ϕ = 0◦-cut) for the sub-array
in Fig. 1 at 8.425GHz, comparing the extended HO-ADM to HO-MLFMM
and HO-MoM. Co-polarization is RHCP whereas the cross-polarization is
LHCP.

64 independent wire excitations. The sub-array is meshed
with a total of 7,552 quadrilaterals comprising N = 60,832
unknowns in the HO-MLFMM/HO-MoM, while N = 62,464
unknowns are needed in the HO-ADM due to the DGM and
dummy unknowns as described in Section II.

The radiated far-field pattern in Fig. 2 has been computed
at 8.425GHz on a laptop with an Intel® Core® i7-9850H
CPU @ 2.6GHz with 6 cores. Comparisons are made with the
full-wave solver in ESTEAM [10] which is based on a state-
of-the-art HO-MoM/MLFMM implementation. The calculated
peak directivity for all methods is 26.07 dB, which is close to
the reported measured directivity of 26 dB [9]. In Fig. 2, both
the co- and cross-polarization ϕ = 0◦-patterns are seen to
coincide comparing the HO-ADM with HO-MoM, effectively
verifying the outlined procedure in Section II. There is equally
good agreement in other ϕ-cuts.

Table I shows a comparison of solution time and memory
consumption between the HO-ADM and ESTEAM. Herein,
the total solution time refers to generation of BFs, matrix
filling, preconditioner generation and the iterative solution
time. Total memory consumption refers to storage of required
matrices, the Krylov subspace as well as the preconditioner.

For reference, the HO-MoM solution has been included

TABLE I
COMPARISON OF SOLUTION TIME AND MEMORY CONSUMPTION ON AN

INTEL® CORE® I7-9850H CPU @ 2.6GHz WITH 6 CORES.

Method
Total

Simulation Time
Memory

Consumption
Number of
Iterations

HO-MoM 1 h 12 min 14 GB N/A
HO-MLFMM 24 min 1.2 GB 245

Extended HO-ADM 41 s 1.6 GB 181

which takes 1 hour and 12 min to complete, with a memory
consumption of 14GB. By employing the more appropriate
HO-MLFMM the solution time is around 24 min with a
memory consumption of only 1.2GB. At the penalty of
slightly increased memory consumption (1.6GB) using the
extended HO-ADM, the solution time is reduced to 41 s.

IV. CONCLUSION

We presented an extended Higher-Order Array Decompo-
sition Method capable of analyzing connected antenna arrays
and applied it to a 8 × 8 sub-array designed for the Europa
Lander mission. The results show a substantial computational
speed-up by a factor of 35 compared to HO-MLFMM. This
speed-up is achieved while maintaining a memory consump-
tion comparable to HO-MFLMM. Results for the full 32×32-
element array will be presented at the conference.
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Abstract—The Higher-Order Array Decomposition Method
(HO-ADM) is extended to arrays with non-identical elements.
This extension is achieved by appropriate manipulation of the
FFT-accelerated matrix-vector product (MVP), special meshing,
and by hiding a selected subset of unknowns in the iterative
solution process. We demonstrate that the simulation time for
a 1024-element patch array can be reduced by an order of
magnitude by employing HO-ADM compared to other fast
methods such as MLFMM.

Index Terms—antenna-arrays, non-identical elements, multi-
level block-Toeplitz, higher-order basis functions

I. INTRODUCTION

Array antennas are a key component in next-generation
satellite payloads and user terminals. To meet performance
requirements for space applications, future array antennas will
be electrically large with densely packed array elements. While
such antennas commonly employ identical elements, the use
of non-identical elements can provide additional flexibility e.g.
in beam shaping, side lobe suppression, and optimization of
weight, size, and cost [1], [2].

The conventional full-wave Method of Moments (MoM)
takes into account the mutual coupling between the densely
packed elements, but suffers from high computational com-
plexity O(N2)−O(N3) and memory consumption O(N2).

Numerous methods, based on error-controllable approxi-
mations, have been proposed to enable the efficient full-
wave analysis of electrically large arrays, reducing memory
consumption and computational complexity to O(N logN).
These comprise the Multi-Level Fast Multipole Method
(MLFMM) [3], the Adaptive Integral Method (AIM) [4],
and the pre-corrected fast Fourier transform (pFFT) [5], with
the last two necessitating the projection of Basis Functions
(BFs) onto a regular grid. For methods based on Macro-
Basis Functions (MBFs) [6], [7], the generation and number of
MBFs to be included are determined by the specific problem,
and the error cannot be controlled beforehand.

By employing the Higher-Order Array Decomposition
Method (HO-ADM) [8], it is possible to improve the compu-
tational efficiency even further without using approximations.

This work was partly funded by Innovation Fund Denmark with grant
number 0153-00057B. * Corresponding author.

Hitherto, each array element had to be identical in the HO-
ADM, effectively excluding the analysis of non-identical-
element arrays, and frequency selective surfaces. In this paper,
the existing HO-ADM is extended to handle arrays with non-
identical elements.

This paper is organized as follows. Section II briefly reviews
the HO-ADM and presents the necessary steps to extent the
HO-ADM to arrays with non-identical elements. Section III
presents a numerical example validating the capabilities of
the extended HO-ADM. Lastly, conclusions are given in
Section IV.

II. HO-ADM WITH NON-IDENTICAL ELEMENTS

The Higher-Order Array Decomposition Method (HO-
ADM) is a fast full-wave boundary integral equation method,
employing higher-order hierarchical Legendre basis functions
on curved quadrilateral mesh-cells applicable to regular arrays
with arbitrary volumetric elements. As detailed in [9], the
Discontinuous Galerkin Method (DGM) can be employed in
the HO-ADM to also handle thinned and connected arrays.

The computational complexity and memory consumption
of the HO-ADM scales as O(s2T log T ) and O(s2T ), respec-
tively, where s is the number of basis functions for each array
element and T is the total number of array elements. Key
to the computational efficiency is an FFT-accelerated matrix-
vector product (MVP), which relies on the inherent multi-level
block-Toeplitz (MBT) MoM matrix arising for regular arrays.

For the MBT property to hold, array elements have to be
identical, i.e. they must possess exactly the same number of
basis functions and mesh-discretization. Therefore, to allow
for non-identical elements in the HO-ADM, two key aspects
are needed: special unit-cell meshing and appropriate manip-
ulation of the MVP.

A. Unit-cell Meshing

For illustration, we take outset in a generic non-identical
3 × 3 = 9-element array as depicted in Fig. 1 (a). By
superimposing the outline of the nine different elements on
top of each other (a mathematical union), a new super unit-
cell (SUC) with 13 distinct mesh-regions arise as shown in
Fig. 1 (c). Utilizing this SUC, a 3× 3-identical-element array



Fig. 1. (a) Illustration of a 3 × 3 array of generic non-identical elements.
(b) an array of identical elements with mesh-regions which can be removed
to transform each element to that of the original non-identical element array.
(c) The unit-cell for the HO-ADM with the 13 required mesh-regions.

(Fig. 1 (b)) can be constructed on which the HO-ADM can
readily be applied.

Assuming for now that we can exclude mesh-regions from
the SUC at any position in the array, we can realize any of the
nine different elements. For example, the green center element
of the non-identical element array can be formed by excluding
mesh-regions {1, 2, 3, 4, 5, 6, 7, 8, 10, 12} from the SUC, while
the blue top-right element can be formed by excluding mesh-
regions {10, 12, 13}. It is noted, that the 13 mesh-regions of
the SUC can be combined into numerous more individual
elements than the nine distinct elements discussed here. Also,
bear in mind that finer meshing inside the 13 mesh-regions is
possible and could be necessary depending on their electrical
size.

This meshing procedure inevitably requires modeling of un-
necessary mesh-cells and therefore also unknowns. However,
since the MoM matrix is MBT it contains many redundant
blocks. Consequently, only the unique information needs to
be calculated and the computational overhead is still small
enough for the HO-ADM to have an advantage over other fast
methods as demonstrated in Section III.

B. MVP Manipulation

It was assumed above that any desired number of mesh-
regions can be excluded from the array elements at any posi-
tion in the array lattice. In practice, this exclusion is achieved
by manipulating the MVP used in the iterative solution process
and by hiding unknowns from the perspective of the iterative
solver.

More specifically, when performing the FFT-accelerated
MVP, the entries pertaining to quadrilaterals in excluded mesh-
regions are zeroed in the unknown vector. This ensures that the
currents on removed quadrilaterals can not couple to currents
on any other quadrilateral in the array. Additionally, entries in
the vector resulting from the MVP associated with excluded
mesh-regions are zeroed to ensure that currents on all other
elements cannot induce any currents on excluded quadrilaterals
themselves.

Finally, the excitation vector, too, must be zeroed accord-
ingly for the iterative solver to calculate the residual vectors
corresponding to the real situation where the zeroed unknowns

did not exist at all, effectively hiding unknowns from the
iterative solver. We note that the use of a SUC together with
hidden unknowns allows for the analysis of all combinations
of the nine distinct array elements in every position, without
recalculation of any MoM matrix elements.

In summary, by carefully constructing the mesh of the unit-
cell of the array while simultaneously hiding unknowns from
the iterative solver, individual mesh-cells can be excluded from
the iterative solution process. This allows one to obtain the
exact same MoM solution as if those mesh-cells did not exist
at all. Consequently, the analysis of non-identical elements has
been made possible while retaining an FFT-accelerated MVP.

III. NUMERICAL VERIFICATION

We consider an 8×128-element linearly polarized patch an-
tenna array with 1024 independent wire excitations operating
at 1.75GHz, as depicted in Fig. 2. It is composed of 128 linear
arrays of size 8 × 1 comprising non-identical space-tapered
elements which effectively achieve an amplitude tapering in
the E-plane to reduce the first side-lobe level (FSLL). This
2D-array is based on the 1D-array reported in [10].

The reported results have been generated on a laptop
with an Intel® Core® i7-9850H CPU @ 2.6GHz with
6 cores. Comparisons are made with the full-wave solver
in ESTEAM [11] which is based on a state-of-the-art HO-
MLFMM implementation. The generalized minimal residual
method (GMRES) iterative solver is employed with relative
residual error tolerance of 10−3.

The complete structure is meshed using 55,296 quadrilateral
mesh-cells comprising N= 440,736 unknowns in the HO-
MLFMM, while N= 507,904 unknowns are needed in the HO-
ADM. The additional unknowns are required due to the special
meshing of the unit-cell as described in Section II as well as
the use of DGM-unknowns as detailed in [9]. Nevertheless,
as evident from Table I, the total computation time can be
reduced from 29min using HO-MLFMM to 3min using the
HO-ADM (a factor of 10), even though HO-ADM requires
circa 15% more unknowns than HO-MLFMM.

Fig. 2. 8×128-element linearly-polarized patch antenna, including illustration
of employed meshing for the reported results of a single space-tapered row.
The illustrated coordinate system is employed for the far-field evaluation in
which (θ = 0◦, ϕ = 0◦) corresponds to the positive x-axis.



TABLE I
TOTAL SOLUTION TIME AND MEMORY CONSUMPTION FOR THE 8× 128

ARRAY IN FIG. 2, COMPARING HO-MLFMM AND HO-ADM ON AN
INTEL® CORE® I7-9850H CPU @ 2.6GHz WITH 6 CORES.

Method
Total

Simulation Time
Memory

Consumption
Number of
Iterations

Time per
Iteration

HO-MoM N/A 1443 GB N/A N/A
HO-MLFMM 29 min 7.2 GB 223 4.9 s

HO-ADM 3 min 2 s 7.9 GB 441 0.3 s

The speedup is even greater for the MVP alone which
is reduced from 4.9 s to 0.3 s per iteration (a factor of 16).
Here it should be noted that the FFT-accelerated MVP in the
HO-ADM is exact, while the MLFMM-accelerated MVP is
approximate, though error-controllable.

Fig. 3 shows the radiated co- and cx-pol far-field patterns
(ϕ=0◦- and ϕ=90◦-cuts) comparing HO-ADM and HO-
MLFMM. The calculated peak directivity for the array is
37.9 dB and the FSLL is −18.5 dB for both methods. The
patterns for the HO-ADM and HO-MLFMM are seen to
agree excellently in both the E- and H-plane. The co-pol
relative RMS-difference εRMS between the HO-ADM and
HO-MLFMM is 0.4% and 0.3% in the E- and H-plane,
respectively. The cx-pol is below the numerical precision in
the E-plane and the H-plane cx-pol relative RMS-difference
εRMS is 0.5% for the complete 360 deg. region.

IV. CONCLUSION

In this paper, we proposed and validated an extension to the
Higher-Order Array Decomposition Method for the analysis
of antenna arrays with non-identical elements and applied it
to a 8 × 128 = 1024-element patch array. The results show
that by using the HO-ADM, an order of magnitude compu-
tational speed-up is achievable compared to HO-MLFMM,
while maintaining a memory consumption comparable to HO-
MFLMM. In addition, the results demonstrate excellent agree-
ment between the HO-ADM and MLFMM (< 0.4% relative
RMS difference).
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APPENDIXA
Mathematical
Foundation of

HO-ADM
This chapter contains mathematical details pertaining to the implemented Higher-
Order Array Decomposition method.

A.1 Surface Discretization and Higher-Order Basis
Functions

Curved quadrilaterals (also called quads or mesh cells) with parametrization r⃗(u, v)
are used to discretize the geometry [87], using the HO-hierarchical Legendre basis
functions from [88] to expand the surface current density as

J⃗(u, v) = e⃗u

JS(u, v)

Mu∑
m=0

Nv∑
n=0

Cuv
mnP̃m(u)Pn(v)xu

mn+

e⃗v

JS(u, v)

Mv∑
m=0

Nu∑
n=0

Cuv
mnP̃m(v)Pn(u)xv

mn, (A.1)

in which {u, v} are curvilinear coordinates of a given quad, x{u,v}
mn are the unknown

current coefficients in the {u, v}-direction, e⃗{u,v} = ∂r⃗
∂{u,v} are unitary vectors, JS

is the Jacobian, Pn are Legendre polynomials of order n and Cuv
mn are constants

chosen to minimize the MoM matrix condition number. P̃m are the modified Legendre
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polynomials defined as

P̃m(u) =


1− u, m = 0
1 + u, m = 1

}
Doublets

Pm(u)− Pm−2(u), m ≥ 2 Singletons
. (A.2)

The modified Legendre polynomials are only used in the direction of the current,
whereas ordinary Legendre polynomials are used in the transverse direction. The
term doublets refer to the usual roof-top current continuity-enforcing basis functions
having support over two quads. The term singletons refer to local current density
variations and have support only within a single quad and are zero on the edges of the
quad. The maximum polynomial order N{u,v} = M{u,v}−1 for the current expansion
in the {u, v}-direction is chosen independently for each quad based on its electrical
size.

A.2 Accelerated Matrix-Vector Product
The efficiency of the Array Decomposition Method and other FFT-accelerated meth-
ods stems from a fundamental yet indispensable property of circulant matrices; The
matrix-vector product between a circulant matrix M ∈ CN×N and a given vector
x⃗ ∈ CN×1 can be expressed as as a discrete circular convolution:

Mx⃗ =



c0 cN−1 . . . c2 c1

c1 c0 cN−1 c2
... c1 c0

. . . ...

cN−2
. . . . . . cN−1

cN−1 cN−2 . . . c1 c0




x0
x1
x2
...
xN

 =


∑N−1

i=0 xic(N−i+0) mod N∑N−1
i=0 xic(N−i+1) mod N

...∑N−1
i=0 xic(2N−1−i) mod N



=


c0
c1
...

cN−2
cN−1


︸ ︷︷ ︸

m⃗

⊛


x0
x1
x2
...
xN

 (A.3)

where m⃗ is the first column of the circulant matrix M, and ⊛ denotes the discrete cir-
cular convolution. This, together with the circular convolution theorem [135], allows
one to retrieve the direct solution to a linear system of equations with a circulant
system matrix in O(N logN) time:

Mx⃗ = m⃗⊛ x⃗ = F−1{F{m⃗} ⊙ F{x⃗}} = b⃗↔ x⃗ = F−1{F{⃗b} ⊘ F{m⃗}}, (A.4)
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where F denotes the discrete Fourier transform, ⊙ is the Hadamard (element-wise)
product, and ⊘ is the Hadamard division operator as defined in [136]. This generalizes
trivially to multi-level block circulant matrices, for which the matrix-vector product
(MVP) can be found as

Mx⃗ = F−1
d {Fd{C} ⊙ Fd{X}}, (A.5)

and the direct solution can be found as

x⃗ = F−1
d {Fd{B} ⊘ Fd{C}}, (A.6)

in which B, X and C are d-dimensional tensors containing the rearranged (according
to the d multi-levels) right-hand side entries, unknowns, and the unique entries of the
system matrix, respectively.

Unfortunately, the direct solution approach as outlines in (A.6) is not applicable
for a general full-wave computational electromagnetics solver. This is mainly due
to the vector nature of the Helmholtz wave equation, which in the context of inte-
gral equations does not allow for a multi-level Toeplitz (or circulant) MoM matrix
structure where the inner-most matrix is also Toeplitz∗. Nevertheless, as we shall see
in the following, an FFT-accelerated MVP is still possible, albeit with a quadratic
scaling in the number of unknowns, s, associated with the inner-most matrix.

We take outset in the hypothetical case of a 2 × 2 array with one BF per array
element (i.e. s = 1) which gives rise to a MoM matrix with d = 2 multi-levels and
without any arbitrary matrix at the inner-most level. In this case, the MoM matrix
A assumes a block-Toeplitz with Toeplitz-blocks (BTTB) structure, and the resulting
MVP is given as

Ax⃗ =


a1 a3 a7 a9
a2 a1 a8 a7
a4 a6 a1 a3
a5 a4 a2 a1



x1
x2
x3
x4

 , (A.7)

where we have d = 2 Toeplitz levels and where the generally complex-valued entries
a1, . . . , a9 are the unique values of the matrix. The idea is now to extend the Toeplitz
blocks at each level to end up with a block-circulant with circulant blocks (BCCB)
matrix. To do so, the blocks at the first level is extended from Toeplitz to circulant
blocks [84, sec. 4.7.7] giving rise to the following one-level extended MoM matrix
AC,1:

∗We note that any matrix can in principle be made circulant, and thus the associated MVP can be
accelerated via the FFT. However, for an arbitrary matrix that would require more operations than
just doing the ordinary MVP itself.
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AC,1x⃗ C,1 =


a1 a3 a7 a9 a4 a6
a2 a1 a8 a7 a5 a4
a4 a6 a1 a3 a7 a9
a5 a4 a2 a1 a7 a9
a7 a9 a4 a6 a1 a3
a8 a7 a5 a4 a2 a1




x1
x2
x3
x4
0
0

 , (A.8)

where zeros have been placed at appropriate positions in the extended unknown vector
x⃗ C,1, in order to calculate correctly the original MVP. Note that underlines indicates
the positions of the orignal entries of the MoM matrix A. Note also, that the resulting
MVP AC,1x⃗ C,1 has two additional rows which are eventually discarded.

Next, the blocks at the second level is extended from Toeplitz to circulant blocks
giving rise to the two-level circularly extended MoM matrix AC,2

AC,2x⃗ C,2 =



a1 a3 a2 a7 a9 a8 a4 a6 a5
a2 a1 a3 a8 a7 a9 a5 a4 a6
a3 a2 a1 a9 a8 a7 a6 a5 a4
a4 a6 a5 a1 a3 a2 a7 a9 a8
a5 a4 a6 a2 a1 a3 a8 a7 a9
a6 a5 a4 a3 a2 a1 a9 a8 a7
a7 a9 a8 a4 a6 a5 a1 a3 a2
a8 a7 a9 a5 a4 a6 a2 a1 a3
a9 a8 a7 a6 a5 a4 a3 a2 a1





x1
x2
0
x3
x4
0
0
0
0


. (A.9)

where zeros have again been placed at appropriate positions in the extended unknown
vector x⃗ C,2, in order to calculate correctly the original MVP.

For the present case with a two-dimensional array lattice d = 2 we can stop
extending the matrix at this point. For arrays in higher dimensions d > 2 one would
keep on extending the MoM matrix using the outlined procedure, until reaching AC,d.
We note, that in practice AC,d is never formed explicitly, which will be evident in the
following.

The entries in the MVP, V, of the circulant-extended MoM matrix AC,2 with
a given extended vector of unknowns x⃗ C,2 can now, using the result of (A.3), be
expressed as a (d = 2)-dimensional circular convolution

V =

a1 a4 a7
a2 a5 a8
a3 a6 a9


︸ ︷︷ ︸

C

⊛

x1 x3 0
x2 x4 0
0 0 0


︸ ︷︷ ︸

X

, (A.10)

where C is a matrix containing only the unique entries of the original MoM matrix A.
Because these entries can be used to generate the circularly extended MoM matrix
AC,2, C is denoted as the circulant generator.
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Note how the extended unknown vector x⃗ C,2 has been arranged in a matrix X
of the same size and dimensions as C in which the only non-zero elements are the
original unknowns.

By utilizing the result of (A.5), the (d = 2)-dimensional discrete circular convolu-
tion can be expressed in terms of the discrete Fourier transformation as

V = F−1
2

F2


a1 a4 a7
a2 a5 a8
a3 a6 a9

⊙F2


x1 x3 0
x2 x4 0
0 0 0


 , (A.11)

where F2 denotes the 2-dimensional discrete Fourier transform and ⊙ denotes the
Hadamard operator, i.e. element-wise multiplication†. Hereafter, the entries U of
the matrix-vector product u⃗ = Ax⃗, are readily available by accessing the sub-matrix
U = V1 ... n1,1 ... n2 ∈ Cn1×n2 ,, where n1 = 2 and n2 = 2 are the number of array
elements in each lattice dimension. The desired column vector u⃗ is obtained by
interpreting the contiguous memory column-major matrix U as a one-dimensional
vector.

In the more general case where we have more than s = 1 BF per array element, the
unique entries ak of AC for k = 1, . . . , 9 themselves become matrices ak ∈ Cs×s with
entries denoted by am,n

k , while the vector entries xk become column vectors x⃗k ∈ Cs×1

with entries enumerated as xn
k . Since the inner-most ak blocks do not, in general,

possess any special symmetry they cannot be accelerated by the FFT. Consequently,
in order to obtain the full MVP entries V, several matrix-vector products Vm need
to be computed for each row m = 1, . . . , s by summation of Hadamard products over
each column n = 1, . . . , s of ak as follows

Vm = F−1
2


s∑

n=1
F2


am,n

1 am,n
4 am,n

7
am,n

2 am,n
5 am,n

8
am,n

3 am,n
6 am,n

9

︸ ︷︷ ︸
Cm,n

⊙F2


xn

1 x
n
4 0

xn
2 x

n
5 0

0 0 0

︸ ︷︷ ︸
Xn

. (A.12)

The desired MVP u⃗ = Ax⃗ is obtained by copying the sub-matrices Um = Vm(1:n1, 1:
n2) interpreted as column-vectors, into u⃗ in the order of m. Note that in practice the
Fourier transformations F2 of Cm,n for all m and n is performed only once before
entering the iterative solution process, while the Fourier transformation F2 of Xn

and the inverse Fourier transformation F−1
2 for Vm, over all n and m, respectively,

is performed only once per MVP.

†We note that the MVP need not be formulated with Hadamard products. In fact, implementation
wise, it is more efficient to implicitly diagonalize C and multiply it with the extended unknown
vector x⃗ C,d directly, for which very efficient LAPACK routines exist.
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A.3 The Discontinuous Galerkin Formulation for
Surface Integral Equations

Figure A.1: Two patch antennas on which half-doublet BFs are introduced
on either side of the connected boundaries between adjacent elements.
Only one full-roof top is shown for illustrative purposes. The Discontin-
uous Galerkin Method is used to enforce current continuity even after
splitting the full-roof top BF into two half roof-tops.

Suppose that we are interested in the interaction between two quads p and q which
happen to reside on two different array elements as depicted in Figure A.1. The
MoM matrix A with entries Am,n associated with the mth test function f⃗m

t , nth basis
function f⃗n

b , and the integral operator L, can be formulated with five inner products
Ii, i ∈ {1, . . . , 5} as

Am,n = ⟨f⃗m
t ,L[f⃗n

b ;Sq]⟩Sp

= -

I1︷ ︸︸ ︷
⟨f⃗m

t ,M[f⃗n
b ;Sq]⟩Sp +k-2

[ I2︷ ︸︸ ︷
⟨∇· f⃗m

t ,M[∇′· f⃗n
b ;Sq]⟩Sp

- ⟨∇· f⃗m
t ,N [n̂q · f⃗n

b ; Cq]⟩Sp︸ ︷︷ ︸
I3

- ⟨n̂p · f⃗m
t ,M[∇′· f⃗n

b ;Sq]⟩Cp︸ ︷︷ ︸
I4

+ ⟨n̂p · f⃗m
t ,N [n̂q · f⃗n

b ; Cq]⟩Cp︸ ︷︷ ︸
I5

]
, (A.13)

after having applied the product rule for divergence, integration by parts and the
symmetry of the Green function to remove the non-integrable singularity. Sp and Sq

are the surfaces of the test and source quads, respectively. Cp and Cq are the closed
contours around Sp and Sq, with in-plane outward normal unit vectors denoted as
n̂p and n̂q, respectively. The EFIE operator L, the vector and scalar single-layer
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potentials P and Q, respectively, are defined as

L[f⃗ ;S] = −jωµ
∫

S

[
1 + 1

k2∇∇·
]
f⃗(r⃗ ′)G(r⃗, r⃗ ′)dS ′ (A.14)

P[f⃗ ;S] = jωµ

∫
S
f⃗(r⃗ ′)G(r⃗, r⃗ ′)dS ′ (A.15)

Q[ψ; C] = jωµ

∮
C
ψ(r⃗ ′)G(r⃗, r⃗ ′)dl′, (A.16)

in which G(r⃗, r⃗ ′) = e−jk|r⃗−r⃗ ′|
|r⃗−r⃗ ′| is the three dimensional free-space Green function

with wave number k = ω
√
µ0ε0, in which µ0 and ε0 are the free space magnetic

permeability and electric permittivity, respectively. r⃗ ′ and r⃗ are position vectors of
the source and test quad, respectively.

In case of divergence-conforming BFs and conformal mesh cells, the three inner
products In, n ∈ {3, 4, 5} vanish, and we are left with the usual EFIE terms In, n ∈
{1, 2}. In DGM, this is not the case as we tear/cut the doublets (full roof-tops) into
half-doublets thereupon necessitating the additional contour integral terms in (A.13).
Although current continuity is no longer directly part of the DGM basis function
formulation, it is instead weakly enforced via the addition of an extra surface integral
penalty term. This residual term is found as outlined in [105] by multiplying the left-
hand side of the continuity equation n̂p · f⃗ m + n̂q · f⃗ n = 0 with the Green function
and testing it at the common edge Cpq = Cp ∩ Cq between two quads p and q, i.e.

I6 = 2⟨n̂p · f⃗m
t ,N [n̂q · f⃗n

b ; Cq]⟩Cp . (A.17)

Remarkably, by multiplying I6 with - 1
2k2 and adding it to (A.13), not only is current

continuity enforced but the difficult double contour integral I5 is canceled, albeit
with the cost of increased condition number of A [103]. Therefore, to stabilize the
resulting DGM MoM matrix and to provide practical iterative convergence, an extra
boundary interior penalty stabilization function IIP(β) is typically added

IIP(β) = β

k2

∮
Cpq

[n̂m· f⃗m
t (r⃗)][n̂n· f⃗n

b (r⃗)]dl, (A.18)

in which β = 1
10h is a scalar depending on the average electrical mesh size h. Note

that IIP is merely responsible for stabilization as the current continuity is already
enforced by canceling I5 via I6.
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APPENDIXB
Computational &

Memory Complexity
of HO-ADM

The Method of Moments matrix has a multi-level block Toeplitz (MBT) structure in
case of two or higher dimensional regular arrays (provided that basis functions are
generated sequentially, i.e. in order of the array elements). It should be noted that
the number of levels in the block Toeplitz structure corresponds to the number of
array lattice dimensions d. The remainder of this appendix will establish formulas
for the computational complexity and memory-scaling of HO-ADM. For a detailed
discussion on how HO-ADM is implemented, the reader is referred to publications
[J1][J2]. For an introduction on FFT accelerated matrix-vector products of MBT
matrices, the reader is referred to Appendix A.

In the HO-ADM algorithm, the Toeplitz blocks at each level are extended to cir-
culant matrix blocks (see Appendix A), effectively introducing additional unknowns,
resulting in a total number of extended unknowns Next:

Next = s

d∏
i=1

[2ni − 1] ≈ 2dN = s2dT. (B.1)

where s is the total number of basis functions (unknowns) on each array element, d is
the total number of array lattice dimensions and ni is the number of array elements
in each dimension i. T = n1n2 . . . nd is the total number of array elements.

B.1 Computational Complexity - Setup Phase
The algorithm starts in the setup phase. Herein only the unique interactions are cal-
culated, and are extended to circulant blocks, and finally multi-dimensional discrete
FFTs are taken along the d array dimensions.
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The calculation of the
∏d

i=1[2ni − 1] unique interaction-matrices, each with s2

entries, gives a computational complexity F set
1 of:

F set
1 = Csets2

d∏
i=1

[2ni − 1] ≈ Csets22dT → O(s2T ) (B.2)

where Cset is a constant indicating the average time needed to calculate the inter-
actions between two basis functions on two different array elements. Keep in mind
the approximation already employed in Eq. B.1, which means that Eq. B.2 generally
overestimates the memory consumption of ADM.

Next, the FFTs of the circulant extended blocks have the computational complex-
ity denoted as F set

2 . NF F T 1 number of FFTs of length LF F T 1 are applied along
the first array lattice dimension, while NF F T 2 number of FFTs of length LF F T 2 are
applied in the second array lattice dimension:

NF F T 1 → Total number of FFTs in first dimension = s2(2n2 − 1)
NF F T 2 → Total number of FFTs in second dimension = s2(2n1 − 1)
LF F T 1 → Length of FFTs in first dimension = 2n1 − 1
LF F T 2 → Length of FFTs in second dimension = 2n2 − 1

Mathematically, the computational cost F set
2 can now be found as follows:

F set
2 = NF F T 1LF F T 1 log(LF F T 1) +NF F T 2LF F T 2 log(LF F T 2)

= s2(2n2 − 1)(2n1 − 1) log(2n1 − 1) + s2(2n1 − 1)(2n2 − 1) log(2n2 − 1)
= s2(2n2 − 1)(2n1 − 1)[log(2n1 − 1)] + log(2n2 − 1)]
= s2(2n2 − 1)(2n1 − 1) log((2n1 − 1)(2n2 − 1))← 2D-FFT

= sNext log
(
Next

s

)
, for d = 2 (B.3)

We notice in passing that because we are dealing with a two-dimensional array lattice,
a 2D-FFT scaling appears scaled with s2. Although only derived in two dimensions,
the expression in (B.3) generalizes trivially to higher dimensional arrays d > 2.
Using that Next ≈ s2dT we get:

F set
2 ≈ s2d sT︸︷︷︸

N

log

2d T︸︷︷︸
N
s

→ O(s2T log(T )) (B.4)

which shows that the complexity grows quadratically with the number of basis func-
tions s on each array element, and that it grows like the FFT for increasing total
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number of array elements T . In passing, we note that it scales exponentially with the
number of array dimensions (2d).
Another perspective is to look at it from the total number of unknowns N :

F set
2 ≈ s2dN log

(
2dN

s

)
→ O

(
sN log

(
N

s

))
(B.5)

Because the total number of unknowns N is a function of s, this perspective renders
it very difficult to understand why the algorithm has a quadratic scaling, which is
why the separation N = sT is adopted in this dissertation.
With a constant number of basis functions per array element (s is considered constant),
however, this scaling perspective readily reveals a more understandable asymptotic
scaling:

O

(
sN log

(
N

s

))
→︸︷︷︸

s=const.
O(N log(N)) (B.6)

The total computational complexity of the setup phase can be summarized as:

F set = F set
1 + F set

2 = Csets22dT + s22dT log
(
2dT

)
→ O

[
s2 (

CsetT + T log(T )
)]

(B.7)

The term CsetT has here been included in the asymptotic scaling since it depends on
the number of basis functions s on each array element. This result is fast compared
to the complexity of ordinary MoM which scales quadratically in both s and total
number of array elements (i.e. O(Csets2T 2)). To be more precise, whether HO-ADM
is faster than ordinary MoM, depends not only on the asymptotic scaling of HO-ADM,
but also on the constant Cset and the number of iterations needed in the iterative
solver.

B.2 Computational Complexity - Matrix-Vector
Product

After the setup phase in which a block-circulant matrix has been implicitly generated,
the HO-ADM algorithm provides a fast matrix vector product (MVP) for an iterative
solver.
For each iteration this MVP is calculated in three steps:

• FMV P
1 Calculate FFT of current iteration unknown vector

• FMV P
2 Calculate Hadamard product between circulant generator and the FFT

of current unknown vector

• FMV P
3 Calculate IFFT of Hadamard product
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The required number and lengths of FFTs of the unknown vector is summarized below
for d = 2:

NF F T 1 → Total number of FFTs in first dimension = s(2n2 − 1)
NF F T 2 → Total number of FFTs in second dimension = s(2n1 − 1)
LF F T 1 → Length of FFTs in first dimension = 2n1 − 1
LF F T 2 → Length of FFTs in second dimension = 2n2 − 1

which means the complexity can be written as:

FMV P
1 = NF F T 1LF F T 1 log(LF F T 1) +NF F T 2LF F T 2 log(LF F T 1)

= s(2n2 − 1)(2n1 − 1) log(2n1 − 1) + s(2n1 − 1)(2n2 − 1) log(2n2 − 1)
= s(2n2 − 1)(2n1 − 1)[log(2n1 − 1)] + log(2n2 − 1)]
= s(2n2 − 1)(2n1 − 1) log((2n1 − 1)(2n2 − 1))

= Next log
(
Next

s

)
≈ s2dT log

(
2dT

)
, for d = 2 (B.8)

Note again, that this expression generalizes to higher-dimensional arrays d > 2. Next,
the Hadamard product scales as:

FMV P
2 = s2(2n2 − 1)(2n1 − 1)

= sNext

≈ s22dT (B.9)

The IFFT of the Hadamard product has the same scaling as the FFT of the unknown
vector:

FMV P
3 = FMV P

1 = s2dT log
(
2dT

)
(B.10)

The total cost FMV P = FMV P
1 + FMV P

2 + FMV P
3 for the matrix vector product for

each iteration becomes:

FMV P = 2s2dT log
(
2dT

)
+ s22dT

= s2dT
[
2 log

(
2dT

)
+ s

]
(B.11)

Note that the quadratic computational scaling in the MVP stems from the Hadamard
product. Note also, that typically 2 log

(
2dT

)
≪ s.

Now, if the number of iterations NI needed to reach a given residual error is
introduced, the total computational complexity F of the algorithm can be written as:

F = F set +NIF
MV P

= Csets22dT + s22dT log
(
2dT

)
+NIs2dT

[
2 log

(
2dT

)
+ s

]
= Csets22dT + s22dT log

(
2dT

)
+ 2NIs2dT log

(
2dT

)
+NIs

22dT

= 2dT log
(
2dT

) [
s2 + 2NIs

]
+ 2ds2T

[
Cset +NI

]
(B.12)



Appendix B.3 Memory Complexity 107

This expression is generally not insightful for the computational complexity of the
algorithm. In subsequent paragraphs two different perspectives of the algorithm will
be investigated. One perspective is where a user has decided on a particular antenna
array element, and wants to simulate larger and larger arrays (s constant). Another
perspective is when the user has decided on the total number of array elements (T
constant), but wants to investigate the accuracy of the simulation, either by increasing
mesh density or by using higher-order basis functions per element.

Large Arrays If larger and larger arrays are simulated, where it is assumed that
a constant amount of basis functions are on each element (s constant), the computa-
tional complexity can be written asymptotically as:

C1︸︷︷︸
2ds2+2NI s

T log( 2d︸︷︷︸
C2

T )→ O(T log T ) (B.13)

in which C1 and C2 indicate factors which are assumed constant. We note here the
computational advantage of using the FFTs, when increasing the total number of
array elements.

Example For a planar d = 2 antenna array with T = 10, 000 array elements we get
a total cost as a function of s:

F = 184, 082
[
s2 + 2NIs

]
+ 40, 000s2 [

Cset +NI

]
(B.14)

Many Basis Functions If a constant amount of array elements has been decided,
but one wants to either discretize the elements more detailed or increase order of
basis functions used, the computational complexity takes on an interesting form:

C1︸︷︷︸
2dT log(2dT )

[
s2 + 2NIf

]
+ s2 C2︸︷︷︸

2dT [Cset+NI ]

→ O(s2) (B.15)

which shows that it scales quadratically with the number of basis functions per array
element.

Example For a planar d = 2 antenna array with s = 60 basis functions per element
we get a total cost as a function of T :

F = 4
[
T log (4T ) [3600 + 120NI ] + 3600T

[
Cset +NI

]]
(B.16)

B.3 Memory Complexity
Thus far, only the computational complexity has been discussed. In the following the
memory cost M of the algorithm will be examined. Memory formulas are given in
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terms of number of complex-valued elements, and thus not directly in bytes since it
depends on the chosen precision.
Storing the calculation of unique interactions and extended matrix blocks requires:

Mset = sNext ≈ s22dT (B.17)

Storage of the unknown vector and the resulting matrix vector product requires:

MMV P = 2Next = s2d+1T (B.18)

The total memory requirement, disregarding the memory needed for the iterative
solver becomes:

M = Mset +MMV P

= sNext + 2Next

= s22dT + s2d+1T → O(s22dT ) (B.19)

The ratio KM of the memory required for ordinary MoM to the asymptotic memory
required in HO-ADM can be determined as:

KM = s2T 2

s22dT
= T

2d
→︸︷︷︸

d=2

T

4
(B.20)

Thus, HO-ADM uses around T
4 times less memory than ordinary MoM.

Example For a state-of-the-art 30 × 30 planar d = 2 antenna array with a repre-
sentative s = 1000 basis functions per element we get:

MMoM = s2T 2 →︸︷︷︸
Complex Single Precision

6035 GB (B.21)

MHO-ADM = 4s2T →︸︷︷︸
Complex Single Precision

26.8 GB (B.22)

which means that HO-ADM can handle state-of-the-art array antennas on a laptop
anno 2023. Note, that (B.22) is always overestimating the required memory in HO-
ADM∗.

∗A better approximation for the memory consumption of HO-ADM is M = 4s2[T −
√

T ].



APPENDIXC
Implementation
Specific Details

The purpose of the present appendix is to provide the reader with important details
related to the specific implementation of HO-ADM.

C.1 Determination of Auxiliary Unknowns for
Connected Arrays

In order not to introduce too many auxiliary unknowns, i.e. placing half-doublets on
every external edge of the element cell of the array, an edge-mask M ∈ BNe×1 can be
used to identify (un)necessary external edges. Here Ne is the number of edges on a
single array element. Assuming an already existing processed mesh associating edges
and quads, the edges on which to place auxiliary unknowns can be found as outlined
in Algorithm 1. We note that this is a simplified algorithm to elucidate the concept,

Algorithm 1 Finding Auxiliary Unknowns
1: procedure GenerateMask
2: M(1 : Ne)← False
3: for ie = 1:Ne do ▷ Edges on array element with neighbors all around.
4: if Edge ie is associated with 2 quadrilaterals then
5: if Quads reside on 2 different array elements then
6: M(ie)← True
7: end if
8: end if
9: end for

10: return M
11: end procedure



110 Appendix C Implementation Specific Details

as it does not take into account thinned arrays, non-identical elements and closed
structures.

Looping over all edges Ne pertaining to a single array element which is completely
surrounded by 3d − 1 neighbors, whether or not to place an additional half-doublet
(auxiliary unknown) is stored at the edge index ie in M . Remark, that we only need
to place auxiliary unknowns on edges which are associated with two (or more) quads,
iff these quads reside on two different array elements.

Because all basis functions are identically enumerated on all array elements, ie can
be interpreted as the relative index on each array element on which M(ie) determines
whether a DGM half-doublet basis function should be placed. In this way, during
subsequent basis function generation, the mask can be used to determine if additional
half-doublets (i.e. auxiliary unknowns) should be placed on an external edge or not,
simply by indexing M(ie).

C.2 Preconditioner Storage Reuse for Connected
Arrays

In the HO-ADM, generation of the near-field block-diagonal coupling preconditioner
MC (see Section 3.3) requires access to the interaction matrices for all array element
T . Remark, however, that this information is already contained within the Toeplitz
circulant tensor format (i.e. the circulant generator C(m,n, k, l)). We provide here
the mapping A(p, q)→ C(m,n, k, l) from global MoM matrix row p and column q to
circulant generator indices (m,n, k, l) in the case of an (up to two)-dimensional array
(i.e. d = {1, 2})

m = mod (p− 1, s)
n = mod (q − 1, s)

k =

{
Pmod −Qmod + 1 for Pmod < Qmod

Pmod −Qmod + 2n1 for Pmod ≥ Qmod

l =

{
p

n1s −
q

n1s + 1 for p
n1s <

q
n1s

p
n1s −

q
n1s + 2n2 for p

n1s ≥
q

n1s

, (C.1)

in which Pmod = mod
(

p−1
s , n1

)
and Qmod = mod

(
q−1

s , n1
)

and fractions denote
integer division, which implies truncation. n1 and n2 are the number of array elements
in the first and second lattice dimensions, respectively, and s is the number of basis
functions per array element. Consequently, this mapping can be used to pick out the
correct entries when building the unique set of at most 16 preconditioner groups (see
Fig. 4 in J2).



APPENDIXD
Miscellaneous

Definitions
The purpose of the present appendix is to provide the reader with definitions to
various terms and phrases used throughout the dissertation:

• Aperiodic array consists of array elements which are non-uniformly spaced
and it is used as an umbrella term for sparse and thinned arrays.

• Circulant generator refers to the unique matrix-blocks of the MBT MoM ma-
trix, which are rearranged into a circulant tensor storage C(m,n, j, k, l), where
j ∈ {1, . . . , 2n1 − 1}, k ∈ {1, . . . , 2n2 − 1} and l ∈ {1, . . . , 2n3 − 1} enumerate
the rearranged blocks at the first (i = 1), second (i = 2) and third (i = 3) block-
circulant level, respectively. m and n denote the rows and columns, respectively,
at the innermost-level.

• Computation time is the wall clock time, including basis function generation,
setup-phase of the algorithm as well as the iterative solution process.

• Computational (or memory) complexity refers to the asymptotic complex-
ity usually described by Big-O notation O(f(x)) which denotes that the true
scaling g(x) of an algorithm as x → ∞ satisfies |g(x)| ≤ C|f(x)| for a fixed
positive C ∈ R for all x > x0, x0 ∈ R [20].

• Discretization (or mesh) is in this dissertation used to denote spatial dis-
cretization, that is, dividing a given virtual representation of a physical structure
into a discrete set of cells or elements.

• Discretization density refers to the total number of unknowns normalized by
the total surface area (in square wavelengths) of the employed mesh.

• Edge refers to one of the three (four) boundaries of a given triangular (quadri-
lateral) mesh cell.
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• Error-controllable refers to a computational method for which the user can
specify a priori to a simulation run, the number of significant digits which is
desired in the solution vector.

• Full MoM refers to the generation and direct solution of the full Method of
Moments matrix. In this dissertation it is implicitly understood as the MoM
with higher-order basis functions.

• Fully-populated refers to a regular, and not necesarily orthogonal, lattice on
which array elements are placed at all available positions.

• Interaction is in this dissertation used to denote the result of calculating the
Moments (inner products between basis functions and the Green function) in the
MoM-matrix, corresponding to the interaction between two (or more) elements.

• Laptop refers to the physical battery powered mobile computer used to produce
the results of this dissertation, with specifications given in Appendix E.

• Memory consumption refers to the amount of Random Access Memory
(RAM) used by all parts of the algorithm, including storing matrices, solution
vectors, preconditioners and the Krylov subspace.

• Mesh cells refer to the curved quadrilaterals used in this dissertation to dis-
cretize a given geometry [87].

• Regular array refers to an arrangement of array elements which are placed
equidistant along each lattice dimension. Consequently, non-orthogonal and
circular lattices are classified as regular arrays.

• Server refers to the physical high-performance compute server used to produce
the results of this dissertation, with specifications given in Appendix E.

• Simulation refers to process of running a specific algorithm with a virtual
representation of a given electromagnetic structure, with the aim to replicate
the outcomes that would occur in a real-world physical environment.

• Sparse array is an array which contains substantially fewer driven radiating
elements than a conventional uniformly spaced array with the same beamwidth
having identical elements.

• Thinned array is a sparse array antenna obtained by terminating or removing
a substantial number of elements from a conventional uniformly spaced array.



APPENDIXE
Computational

Machines
The purpose of the present appendix is to list the computer architectures which have
been used to produce the results of the contemporary dissertation.

Laptop
The laptop used is a Dell Precision 5540 with an Intel® Core™ i7-9850H Processor
with 6 physical cores. Each physical core can run 2 threads using Intel’s hyperthread-
ing technology.

Processor Intel® Core™ i7-9850H CPU @ 2.60 GHz
Memory 32 GB 2667 MHz DDR3

Table E.1: Specifications for the laptop used to produce the results of this
dissertation.

Server
The computing server is used for large cases for which the laptop resources are insuf-
ficient or to compute very accurate reference results with full MoM. It comprises two
Intel® Xeon™ E5-2690 with 12 physical cores, for a total of 24 cores and 48 threads
in the machine.

Processor Intel® Xeon™ E5-2690 CPU @ 3.50 GHz
Memory 1536 GB 1600 MHz DDR3

Table E.2: Specifications for computing server used to produce the results
of this dissertation.
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